Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing

  • Tønnes F. NygaardEmail author
  • Jørgen Nordmoen
  • Kai Olav Ellefsen
  • Charles P. Martin
  • Jim Tørresen
  • Kyrre Glette
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1056)


Creating robust robot platforms that function in the real world is a difficult task. Adding the requirement that the platform should be capable of learning, from nothing, ways to generate its own movement makes the task even harder. Evolutionary Robotics is a promising field that combines the creativity of evolutionary optimization with the real-world focus of robotics to bring about unexpected control mechanisms in addition to whole new robot designs. Constructing a platform that is capable of these feats is difficult, and it is important to share experiences and lessons learned so that designers of future robot platforms can benefit. In this paper, we introduce our robotics platform and detail our experiences with real-world evolution. We present thoughts on initial design considerations and key insights we have learned from extensive experimentation. We hope to inspire new platform development and hopefully reduce the threshold of doing real-world legged robot evolution.


Evolutionary robotics Real-world evolution Lessons learned 


  1. 1.
    Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Exploring mechanically self-reconfiguring robots for autonomous design. In: 2018 ICRA Workshop on Autonomous Robot Design (2018)Google Scholar
  2. 2.
    Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1, 4 (2014)CrossRefGoogle Scholar
  3. 3.
    Wilson, A., Golonka, S.: Embodied cognition is not what you think it is. Front. Psychol. 4, 58 (2013)CrossRefGoogle Scholar
  4. 4.
    Nordmoen, J., Nygaard, T.F., Ellefsen, K.O., Glette, K.: Evolved embodied phase coordination enables robust quadruped robot locomotion. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2019)Google Scholar
  5. 5.
    Nygaard, T.F., Samuelsen, E., Glette, K.: Overcoming initial convergence in multi-objective evolution of robot control and morphology using a two-phase approach. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 825–836. Springer, Cham (2017). Scholar
  6. 6.
    Silva, M.F., Tenreiro Machado, J.: A historical perspective of legged robots. J. Vib. Control 13(9–10), 1447–1486 (2007)CrossRefGoogle Scholar
  7. 7.
    Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)CrossRefGoogle Scholar
  8. 8.
    Doncieux, S., Bredeche, N., Mouret, J.-B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)CrossRefGoogle Scholar
  9. 9.
    Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 3040–3045. IEEE (2000)Google Scholar
  10. 10.
    Lohmann, S., Yosinski, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: an open-source quadruped platform for evolutionary robotics. In: Artificial Life Conference Proceedings 12, pp. 387–392. MIT Press (2012)Google Scholar
  11. 11.
    Haasdijk, E., Bredeche, N., Eiben, A.E.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. Plos one 9(6), 1–14 (2014)CrossRefGoogle Scholar
  12. 12.
    Koos, S., Cully, A., Mouret, J.-B.: Fast damage recovery in robotics with the t-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)CrossRefGoogle Scholar
  13. 13.
    Picardi, G., Hauser, H., Laschi, C., Calisti, M.: Morphologically induced stability on an underwater legged robot with a deformable body. Int. J. Robot. Res. (2019)
  14. 14.
    Mouret, J.-B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1121–1124. ACM (2017)Google Scholar
  15. 15.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). Scholar
  16. 16.
    Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)CrossRefGoogle Scholar
  17. 17.
    Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17, 122–145 (2013)CrossRefGoogle Scholar
  18. 18.
    Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)Google Scholar
  19. 19.
    Pfeifer, R., Gómez, G.: Morphological computation–connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009). Scholar
  20. 20.
    Hoffman, G.: Embodied cognition for autonomous interactive robots. Top. Cogn. Sci. 4(4), 759–772 (2012)CrossRefGoogle Scholar
  21. 21.
    Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Self-modifying morphology experiments with DyRET: dynamic robot for embodied testing. In: 2019 IEEE International Conference on Robotics and Automation (ICRA) (2019)Google Scholar
  22. 22.
    Nygaard, T.F., Nordmoen, J.: DyRET software repository (2019).
  23. 23.
    Nygaard, T.F., Torresen, J., Glette, K.: Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)Google Scholar
  24. 24.
    Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2018)Google Scholar
  25. 25.
    Nordmoen, J., Ellefsen, K.O., Glette, K.: Combining MAP-elites and incremental evolution to generate gaits for a mammalian quadruped robot. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 719–733. Springer, Cham (2018). Scholar
  26. 26.
    Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Evolving robots on easy mode: towards a variable complexity controller for quadrupeds. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 616–632. Springer, Cham (2019). Scholar
  27. 27.
    Nordmoen, J., Samuelsen, E., Ellefsen, K.O., Glette, K.: Dynamic mutation in MAP-elites for robotic repertoire generation. In: Artificial Life Conference Proceedings, pp. 598–605. MIT Press (2018)Google Scholar
  28. 28.
    Ryan, T.P., Morgan, J.: Modern experimental design. J. Stat. Theory Pract. 1(3–4), 501–506 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tønnes F. Nygaard
    • 1
    Email author
  • Jørgen Nordmoen
    • 1
  • Kai Olav Ellefsen
    • 1
  • Charles P. Martin
    • 1
    • 2
  • Jim Tørresen
    • 1
    • 2
  • Kyrre Glette
    • 1
    • 2
  1. 1.Department of InformaticsUniversity of OsloOsloNorway
  2. 2.RITMO Center of ExcellenceUniversity of OsloOsloNorway

Personalised recommendations