Advertisement

Quantum Networks Based on Single Photons

  • Oliver BensonEmail author
  • Tim Kroh
  • Chris Müller
  • Jasper Rödiger
  • Nicolas Perlot
  • Ronald Freund
Chapter
  • 206 Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)

Abstract

Quantum networks rely on the transfer of quantum information between stationary quantum nodes. Physically the nodes are connected by single photons. In a first part of this chapter we address different components of a quantum network. We start with a discussion of semiconductor photon sources with an emission wavelength near 900 nm. In order to make them suitable for fiber-networks a conversion to the telecom band is required. We describe how such converters can be realized with the help of nonlinear optics. Next we address photon storage devices as crucial components of quantum repeaters, which are necessary to establish quantum key distribution (QKD) over long distances. We concentrate on the approach of room-temperature gas cells filled with alkali atoms and outline first promising result. In a second part we address a special QKD protocol, the so-called time-frequency (TF) protocol. It can mostly be realized with off-the-shelf components and its encoding of quantum bits in frequency and time suggests a straightforward way to utilize multiplexing. We analyze the TF-protocol numerically before we report on an actual free-space link over 100 m as a testbed for a quantum network in a realistic environment.

References

  1. 1.
    H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008).  https://doi.org/10.1038/nature07127ADSCrossRefGoogle Scholar
  2. 2.
    S. Wehner, D. Elkouss, R. Hanson, Quantum internet: a vision for the road ahead. Science 362, 1–9 (2018).  https://doi.org/10.1126/science.aam9288MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Zaske, A. Lenhard, C.A. Kessler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).  https://doi.org/10.1103/PhysRevLett.109.147404ADSCrossRefGoogle Scholar
  4. 4.
    H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau, M. Markham, D.J. Twitchen, L. Childress, R. Hanson, Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).  https://doi.org/10.1038/nature12016ADSCrossRefGoogle Scholar
  5. 5.
    V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, G. Björk, Single quantum dots emit single photons at a time: antibunching experiments. Appl. Phys. Lett. 78, 2476–2478 (2001).  https://doi.org/10.1063/1.1366367ADSCrossRefGoogle Scholar
  6. 6.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).  https://doi.org/10.1038/nature09256ADSCrossRefGoogle Scholar
  7. 7.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).  https://doi.org/10.1038/nature02851ADSCrossRefGoogle Scholar
  8. 8.
    J. Volz, W. Weber, D. Schlenk, W. Rosenfeld, V. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).  https://doi.org/10.1103/physrevlett.96.030404ADSCrossRefGoogle Scholar
  9. 9.
    B.B. Blinov, D.L. Moehring, L. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).  https://doi.org/10.1038/nature02377ADSCrossRefGoogle Scholar
  10. 10.
    B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).  https://doi.org/10.1038/35035032ADSCrossRefGoogle Scholar
  11. 11.
    W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).  https://doi.org/10.1038/nature11573ADSCrossRefGoogle Scholar
  12. 12.
    N. Sangouard, C. Simon, H. Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).  https://doi.org/10.1103/RevModPhys.83.33ADSCrossRefGoogle Scholar
  13. 13.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982).  https://doi.org/10.1038/299802a0ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).  https://doi.org/10.1103/PhysRevLett.81.5932ADSCrossRefGoogle Scholar
  15. 15.
    M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013).  https://doi.org/10.1063/1.4825106ADSCrossRefGoogle Scholar
  16. 16.
    A. Kors, K. Fuchs, M. Yacob, J.P. Reithmaier, M. Benyoucef, Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities. Appl. Phys. Lett. 110, 031101 (2017).  https://doi.org/10.1063/1.4974207ADSCrossRefGoogle Scholar
  17. 17.
    N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, G. Sęk, Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv. 8, 085205 (2018).  https://doi.org/10.1063/1.5038137ADSCrossRefGoogle Scholar
  18. 18.
    C.-Y. Lu, J.-W. Pan, Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K. Phys. Rev. B 98, 125407 (2018).  https://doi.org/10.1103/PhysRevB.98.125407CrossRefGoogle Scholar
  19. 19.
    I. Aharonovic, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).  https://doi.org/10.1038/NPHOTON.2016.186ADSCrossRefGoogle Scholar
  20. 20.
    O. Benson, C. Santori, M. Pleton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).  https://doi.org/10.1103/PhysRevLett.84.2513ADSCrossRefGoogle Scholar
  21. 21.
    C.-Y. Lu, J.-W. Pan, Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014).  https://doi.org/10.1038/nphoton.2014.29ADSCrossRefGoogle Scholar
  22. 22.
    M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014).  https://doi.org/10.1038/NPHOTON.2013.377ADSCrossRefGoogle Scholar
  23. 23.
    L. Schweickert, K.D. Jöns, K.D. Zeuner, S.F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller, On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).  https://doi.org/10.1063/1.5020038ADSCrossRefGoogle Scholar
  24. 24.
    D. Huber, M. Reindl, S.F. Covre da Silva, C. Schimpf, J. Martín-Sánchez, H. Huang, G. Piredda, J. Edlinger, A. Rastelli, R. Trotta, Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).  https://doi.org/10.1103/physrevlett.121.033902ADSCrossRefGoogle Scholar
  25. 25.
    N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A.G. White, L. Lanco, P. Senellart, Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016).  https://doi.org/10.1038/nphoton.2016.23ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Boyd, in Nonlinear Optics. (Academic Press, 2013)Google Scholar
  27. 27.
    M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435 (1993).  https://doi.org/10.1063/1.108925ADSCrossRefGoogle Scholar
  28. 28.
    P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961).  https://doi.org/10.1103/PhysRevLett.7.118ADSCrossRefGoogle Scholar
  29. 29.
    T. Kroh, A. Ahlrichs, B. Sprenger, O. Benson, Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength. Quantum Sci. Technol. 2, 034007 (2017).  https://doi.org/10.1088/2058-9565/aa736cADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, O.G. Schmidt, High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).  https://doi.org/10.1038/ncomms10067ADSCrossRefGoogle Scholar
  31. 31.
    H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4521 (2014).  https://doi.org/10.1038/ncomms5251CrossRefGoogle Scholar
  32. 32.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009).  https://doi.org/10.1038/nphoton.2009.231ADSCrossRefGoogle Scholar
  33. 33.
    L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).  https://doi.org/10.1038/35106500ADSCrossRefGoogle Scholar
  34. 34.
    P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493(R) (1995).  https://doi.org/10.1103/PhysRevA.52.R2493ADSCrossRefGoogle Scholar
  35. 35.
    C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H. Müller, J. Nunn, E.S. Polzik, J.G. Rarity, H. De Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I.A. Walmsley, M.C. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Quantum memories. Eur. Phys. J. D 58, 1 (2010).  https://doi.org/10.1140/epjd/e2010-00103-yADSCrossRefGoogle Scholar
  36. 36.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  37. 37.
    Z.J. Ou, Multi-Photon Quantum Interference (Springer, Berlin, 2007)zbMATHGoogle Scholar
  38. 38.
    P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, M. Afzelius, Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. Phys. Rev. Lett. 114, 230502 (2015).  https://doi.org/10.1103/PhysRevLett.114.230502ADSCrossRefGoogle Scholar
  39. 39.
    T. Zhong, J.M. Kindem, J.G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. Woo Nam, F. Marsili, M.D. Shaw, A.D. Beyer, A. Faraon, Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).  https://doi.org/10.1126/science.aan5959ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    D.D. Sukachev, A. Sipahigil, C.T. Nguyen, M.K. Bhaskar, R.E. Evans, F. Jelezko, M.D. Lukin, Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).  https://doi.org/10.1103/PhysRevLett.119.223602ADSCrossRefGoogle Scholar
  41. 41.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).  https://doi.org/10.1038/nature03008ADSCrossRefGoogle Scholar
  42. 42.
    Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics 11, 646–650 (2017).  https://doi.org/10.1038/s41566-017-0007-1ADSCrossRefGoogle Scholar
  43. 43.
    P. Vernaz-Gris, K. Huang, M. Cao, A.S. Sheremet, J. Laurat, Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018).  https://doi.org/10.1038/s41467-017-02775-8ADSCrossRefGoogle Scholar
  44. 44.
    D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, G.-C. Guo, Raman quantum memory of photonic polarized entanglement. Nat. Photonics 9, 332–338 (2015).  https://doi.org/10.1038/NPHOTON.2015.43ADSCrossRefGoogle Scholar
  45. 45.
    J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R.J. Warburton, P. Treutlein, Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).  https://doi.org/10.1103/PhysRevLett.119.060502ADSCrossRefGoogle Scholar
  46. 46.
    D. Höckel, O. Benson, Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Phys. Rev. Lett. 105, 153605 (2010).  https://doi.org/10.1103/PhysRevLett.105.153605ADSCrossRefGoogle Scholar
  47. 47.
    P.S. Michelberger, T.F.M. Champion, M.R. Sprague, K.T. Kaczmarek, M. Barbieri, X.M. Jin, D.G. England, W.S. Kolthammer, D.J. Saunders, J. Nunn, Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory. New J. Phys. 17, 043006 (2015).  https://doi.org/10.1088/1367-2630/17/4/043006ADSCrossRefGoogle Scholar
  48. 48.
    D.J. Saunders, J.H.D. Munns, T.F.M. Champion, C. Qiu, K.T. Kaczmarek, E. Poem, P.M. Ledingham, I.A. Walmsley, J. Nunn, Cavity-enhanced room-temperature broadband raman memory. Phys. Rev. Lett. 116, 090501 (2016).  https://doi.org/10.1103/PhysRevLett.116.090501ADSCrossRefGoogle Scholar
  49. 49.
    M.T. Graf, D.F. Kimball, S.M. Rochester, K. Kerner, C. Wong, D. Budker, E.B. Alexandrov, M.V. Balabas, V.V. Yashchuk, Relaxation of atomic polarization in paraffin-coated cesium vapor cells. Phys. Rev. A 72, 023401 (2005).  https://doi.org/10.1103/PhysRevA.72.023401ADSCrossRefGoogle Scholar
  50. 50.
    A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, C. Adams, Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor. Phys. Rev. A 82, 045806 (2010).  https://doi.org/10.1103/PhysRevA.82.045806ADSCrossRefGoogle Scholar
  51. 51.
    N. Akopian, L. Wang, A. Rastelli, O.G. Schmidt, V. Zwiller, Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photonics 5, 230–233 (2011).  https://doi.org/10.1038/nphoton.2011.16ADSCrossRefGoogle Scholar
  52. 52.
    B.R. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 1969, 188 (1969).  https://doi.org/10.1103/PhysRev.188.1969CrossRefGoogle Scholar
  53. 53.
    H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977).  https://doi.org/10.1103/PhysRevLett.39.691ADSCrossRefGoogle Scholar
  54. 54.
    S.M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, P. Michler, Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot. Phys. Rev. B 90, 125310 (2014).  https://doi.org/10.1103/PhysRevB.90.125310ADSCrossRefGoogle Scholar
  55. 55.
    S.L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, I. Gerhardt, Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nat. Commun. 7, 13632 (2016).  https://doi.org/10.1038/ncomms13632ADSCrossRefGoogle Scholar
  56. 56.
    F. Ding, R. Singh, J.D. Plumhof, T. Zander, V. Křápek, Y.H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, O.G. Schmidt, Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys. Rev. Lett. 104, 067405 (2010).  https://doi.org/10.1103/PhysRevLett.104.067405ADSCrossRefGoogle Scholar
  57. 57.
    A. Rastelli, F. Ding, J.D. Plumhof, S. Kumar, R. Trotta, C. Deneke, A. Malachias, P. Atkinson, E. Zallo, T. Zander, A. Herklotz, R. Singh, V. Křápek, J.R. Schröter, S. Kiravittaya, M. Benyoucef, R. Hafenbrak, K.D. Jöns, D.J. Thurmer, D. Grimm, G. Bester, K. Dörr, P. Michler, O.G. Schmidt, Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Phys. Status Solidi B 249, 687–696 (2012).  https://doi.org/10.1002/pssb.201100775ADSCrossRefGoogle Scholar
  58. 58.
    J.-P. Jahn, M. Munsch, L. Béguin, A.V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O.G. Schmidt, A. Rastelli, P. Treutlein, R.J. Warburton, An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B 92, 245439 (2015).  https://doi.org/10.1103/PhysRevB.92.245439ADSCrossRefGoogle Scholar
  59. 59.
    J.S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O.G. Schmidt, A. Rastelli, Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots. Phys. Rev. B 92, 235306 (2015).  https://doi.org/10.1103/PhysRevB.92.235306ADSCrossRefGoogle Scholar
  60. 60.
    R. Trotta, J. Martín-Sánchez, J.S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, A. Rastelli, Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).  https://doi.org/10.1038/ncomms10375ADSCrossRefGoogle Scholar
  61. 61.
    H. Vural, S.L. Portalupi, J. Maisch, S. Kern, J.H. Weber, M. Jetter, J. Wrachtrup, R. Löw, I. Gerhardt, P. Michler, Two-photon interference in an atom–quantum dot hybrid system. Optica 5, 367–373 (2018).  https://doi.org/10.1364/OPTICA.5.000367ADSCrossRefGoogle Scholar
  62. 62.
    K.T. Kaczmarek, P.M. Ledingham, B. Brecht, S.E. Thomas, G.S. Thekkadath, O. Lazo-Arjona, J.H.D. Munns, E. Poem, A. Feizpour, D.J. Saunders, J. Nunn, I.A. Walmsley, High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018).  https://doi.org/10.1103/PhysRevA.97.042316ADSCrossRefGoogle Scholar
  63. 63.
    R. Finkelstein, E. Poem, O. Michel, O. Lahad, O. Firstenberg, Fast, noise-free memory for photon synchronization at room temperature. Sci. Adv. 4, eaap8598 (2018).  https://doi.org/10.1126/sciadv.aap8598ADSCrossRefGoogle Scholar
  64. 64.
    C. H. Bennett, G. Brassard, in Quantum Cryptography: Public Key Distribution and Coin Tossing, Conference on Computers, Systems and Signal Processing (Bangalore, India, Dec 1984), pp. 175–179Google Scholar
  65. 65.
    M.D. Reid, Quantum cryptography with a predetermined key, using continuous-variable einstein-podolsky-rosen correlations. Phys. Rev. A 62, 062308 (2000).  https://doi.org/10.1103/PhysRevA.62.062308ADSCrossRefGoogle Scholar
  66. 66.
    M. Hillery, Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).  https://doi.org/10.1103/PhysRevA.61.022309ADSCrossRefGoogle Scholar
  67. 67.
    T.C. Ralph, Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).  https://doi.org/10.1103/PhysRevA.61.010303MathSciNetCrossRefGoogle Scholar
  68. 68.
    N.T. Islam, C. Cahall, A. Aragoneses, A. Lezama, J. Kim, D.J. Gauthier, Robust and stable delay interferometers with application to d-dimensional time-frequency quantum key distribution. Phys. Rev. Appl. 7, 044010 (2017).  https://doi.org/10.1103/PhysRevApplied.7.044010ADSCrossRefGoogle Scholar
  69. 69.
    C. Lee, D. Bunandar, Z. Zhang, G.R. Steinbrecher, P.B. Dixon, F.N. Wong, J.H. Shapiro, S.A. Hamilton, D. Englund, in High-rate field demonstration of large-alphabet quantum key distribution, preprint arXiv:1611.01139 (2016)
  70. 70.
    T. Zhong, H. Zhou, R.D. Horansky, C. Lee, V.B. Verma, A.E. Lita, A. Restelli, J.C. Bienfang, R.P. Mirin, T. Gerrits, Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New J. Phys. 17, 022002 (2015).  https://doi.org/10.1088/1367-2630/17/2/022002ADSCrossRefGoogle Scholar
  71. 71.
  72. 72.
    A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).  https://doi.org/10.1103/PhysRevLett.67.661ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang et al., Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).  https://doi.org/10.1103/PhysRevLett.117.190501ADSCrossRefGoogle Scholar
  74. 74.
    C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the DARPA quantum network. Quantum Inf. Comput. III Int. Soc. Opt. Photonics 5815, 138–150 (2005).  https://doi.org/10.1117/12.606489ADSCrossRefGoogle Scholar
  75. 75.
    M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka et al., Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).  https://doi.org/10.1364/OE.19.010387ADSCrossRefGoogle Scholar
  76. 76.
    T.P. Spiller, Quantum Communications hub EPSRC. Impact 2018(5), 12 (2018).  https://doi.org/10.21820/23987073.2018.5.12, https://www.quantumcommshub.net/CrossRefGoogle Scholar
  77. 77.
  78. 78.
    S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu et al., Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).  https://doi.org/10.1103/physrevlett.120.030501ADSCrossRefGoogle Scholar
  79. 79.
    J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai et al., Satellite-based entanglement distribution over 1200 km. Science 356, 1140 (2017).  https://doi.org/10.1126/science.aan3211CrossRefGoogle Scholar
  80. 80.
    M. Leifgen, R. Elschner, N. Perlot, C. Weinert, C. Schubert, O. Benson, Practical implementation and evaluation of a quantum-key-distribution scheme based on the time-frequency uncertainty. Phys. Rev. A 92, 042311 (2015).  https://doi.org/10.1103/PhysRevA.92.042311ADSCrossRefGoogle Scholar
  81. 81.
    J. Rödiger, N. Perlot, R. Mottola, R. Elschner, C.-M. Weinert, O. Benson, R. Freund, Numerical assessment and optimization of discrete-variable time-frequency quantum key distribution. Phys. Rev. A 95, 052312 (2017).  https://doi.org/10.1103/PhysRevA.95.052312ADSCrossRefGoogle Scholar
  82. 82.
    Y. Zhang, I.B. Djordjevic, M.A. Neifeld, Weak-coherent-state-based time-frequency quantum key distribution. J. Mod. Opt. 62, 1713–1721 (2015).  https://doi.org/10.1080/09500340.2015.1075616ADSCrossRefGoogle Scholar
  83. 83.
    N. Namekata, S. Adachi, S. Inoue, 1.5 ghz single-photon detection at telecommunication wavelengths using sinusoidally gated ingaas/inp avalanche photodiode. Opt. Express 17, 6275 (2009).  https://doi.org/10.1364/oe.17.006275ADSCrossRefGoogle Scholar
  84. 84.
    R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek et al., Entanglement-based quantum communication over 144 km. Nat. Physics 3, 481–486 (2007).  https://doi.org/10.1038/nphys629ADSCrossRefGoogle Scholar
  85. 85.
    T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J.G. Rarity et al., Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).  https://doi.org/10.1103/physrevlett.98.010504ADSCrossRefGoogle Scholar
  86. 86.
    S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan et al., Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics 11, 509 (2017).  https://doi.org/10.1038/nphoton.2017.116CrossRefGoogle Scholar
  87. 87.
    N. Perlot, J. Roediger, R. Freund, Single-mode optical antenna for high-speed and quantum communications, in Photonic Networks, 19th ITG-Symposium. VDE (2018), pp. 1–4Google Scholar
  88. 88.
    P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).  https://doi.org/10.1038/nnano.2017.218ADSCrossRefGoogle Scholar
  89. 89.
    T. Müller, J. Skiba-Szymanska, A.B. Krysa, J. Huwer, M. Felle, M. Anderson, R.M. Stevenson, J. Heffernan, D.A. Ritchie, A. Shields, A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat. Commun. 9, 862 (2018).  https://doi.org/10.1038/s41467-018-03251-7ADSCrossRefGoogle Scholar
  90. 90.
    A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, S. Reitzenstein, A stand-alone fiber-coupled single-photon source. Sci. Rep. 8, 1340 (2018).  https://doi.org/10.1038/s41598-017-19049-4ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Oliver Benson
    • 1
    Email author
  • Tim Kroh
    • 1
  • Chris Müller
    • 1
  • Jasper Rödiger
    • 2
  • Nicolas Perlot
    • 2
  • Ronald Freund
    • 2
  1. 1.Institute of PhysicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Heinrich Hertz InstituteFraunhofer Institute for TelecommunicationsBerlinGermany

Personalised recommendations