Advertisement

Theory of Spectroscopy and Light Emission of Semiconductors Nanostructures

  • Sandra C. Kuhn
  • Alexander Carmele
  • Andreas Knorr
  • Marten RichterEmail author
Chapter
  • 195 Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)

Abstract

Due to their tunable optoelectronic properties, quantum confined electronic excitations in semiconductor quantum dots offer a versatile platform to design nanophotonic device applications. To address and control individual electronic excitations such as excitons, the fundamental Coulomb interaction between the electronic states as well as their coupling to other quasiparticles such as phonons and photons is of interest. In this chapter, we develop a theory of quantum dot spectroscopy and study coupled quantum dot-cavity structures with respect to their correlated photon emission statistics. To account for the surrounding material of the quantum emitter, we include electron-phonon interaction as well as analyze transitions between localized bound quantum dot states and delocalized states of the host medium. Coherent couplings between different quantum dots and the underlying microscopic coupling mechanisms are investigated using two-dimensional spectroscopy.

Keywords

Correlation function Entanglement Intraband spectroscopy Förster and Dexter transfer; Two-dimensional spectroscopy 

Notes

Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 787 Projekt B1 (43659573).

References

  1. 1.
    D. Bimberg, M. Grundmann, N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999)Google Scholar
  2. 2.
    B. Lingnau, K. Lüdge, B. Herzog, M. Kolarczik, Y. Kaptan, U. Woggon, N. Owschimikow, Phys. Rev. B 94, 014305 (2016).  https://doi.org/10.1103/PhysRevB.94.014305
  3. 3.
    J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 71, 125327 (2005).  https://doi.org/10.1103/PhysRevB.71.125327
  4. 4.
    I.A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M.R. Dachner, M. Richter, A. Knorr, S. Kako, Y. Arakawa, Phys. Rev. B 85, 081303 (2012).  https://doi.org/10.1103/PhysRevB.85.081303
  5. 5.
    H. Haug, S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (2009).  https://doi.org/10.1088/1742-6596/248/1/012018Google Scholar
  6. 6.
    G. Kießlich, A. Wacker, E. Schöll, S.A. Vitusevich, A.E. Belyaev, S.V. Danylyuk, A. Förster, N. Klein, M. Henini, Phys. Rev. B 68, 125331 (2003).  https://doi.org/10.1103/PhysRevB.68.125331
  7. 7.
    S. Franke, S. Hughes, M.K. Dezfouli, P.T. Kristensen, K. Busch, A. Knorr, M. Richter, Phys. Rev. Lett. 122, 213901 (2019). https://doi.org/10.1103/PhysRevLett.122.213901
  8. 8.
    P. Tighineanu, C.L. Dreeßen, C. Flindt, P. Lodahl, A.S. Sørensen, Phys. Rev. Lett. 120, 257401 (2018).  https://doi.org/10.1103/PhysRevLett.120.257401
  9. 9.
    S. Bounouar, M. Müller, A.M. Barth, M. Glässl, V.M. Axt, P. Michler, Phys. Rev. B 91, 161302 (2015).  https://doi.org/10.1103/PhysRevB.91.161302
  10. 10.
    G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  11. 11.
    G. Czycholl, Theoretische Festkörperphysik (Springer, 2008)Google Scholar
  12. 12.
    K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012).  https://doi.org/10.1103/PhysRevB.85.115317ADSCrossRefGoogle Scholar
  13. 13.
    K. Kaasbjerg, K.S. Thygesen, A.P. Jauho, Phys. Rev. B 87, 235312 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    B. Krummheuer, V.M. Axt, T. Kuhn, Phys. Rev. B 65, 195313 (2002).  https://doi.org/10.1103/PhysRevB.65.195313
  15. 15.
    J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Physica Status Solidi (b), 238(3), 419.  https://doi.org/10.1002/pssb.200303155ADSCrossRefGoogle Scholar
  16. 16.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)Google Scholar
  17. 17.
    A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76, 205324 (2007).  https://doi.org/10.1103/PhysRevB.76.205324
  18. 18.
    D. Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, J.C. Maan, Phys. Rev. Lett. 94, 026808 (2005).  https://doi.org/10.1103/PhysRevLett.94.026808
  19. 19.
    V.A. Fonoberov, E.P. Pokatilov, A.A. Balandin, Phys. Rev. B 66, 085310 (2002).  https://doi.org/10.1103/PhysRevB.66.085310
  20. 20.
    D. Nikonov, A. Imamoğlu, L. Butov, H. Schmidt, Phys. Rev. Lett. 79, 4633 (1997).  https://doi.org/10.1103/PhysRevLett.79.4633ADSCrossRefGoogle Scholar
  21. 21.
    T.R. Nielsen, P. Gartner, M. Lorke, J. Seebeck, F. Jahnke, Phys. Rev. B 72, 235311 (2005).  https://doi.org/10.1103/PhysRevB.72.235311
  22. 22.
    A. Zimmermann, S. Kuhn, M. Richter, Phys. Rev. B 93, 035308 (2016).  https://doi.org/10.1103/PhysRevB.93.035308
  23. 23.
    A. Carmele, A. Knorr, M. Richter, Phys. Rev. B 79, 035316 (2009).  https://doi.org/10.1103/PhysRevB.79.035316
  24. 24.
    M. Fox, in Quantum Optics: An Introduction. Oxford Master Series in Physics (OUP Oxford, 2006)Google Scholar
  25. 25.
    H. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002)Google Scholar
  26. 26.
    M. Berman, R. Kosloff, H. Tal-Ezer, J. Phys. A Math. General 25(5), 1283 (1992). http://stacks.iop.org/0305-4470/25/i=5/a=031
  27. 27.
    C. Gies, F. Jahnke, W.W. Chow, Phys. Rev. A 91, 061804 (2015).  https://doi.org/10.1103/PhysRevA.91.061804
  28. 28.
    J. Clauser, A. Shimony, Rep. Progress Phys. 41(12), 1881 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47(7), 460 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    A. Carmele, A. Knorr, Phys. Rev. B 84(7), 075328 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).  https://doi.org/10.1103/PhysRevLett.84.2513ADSCrossRefGoogle Scholar
  32. 32.
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84(11), 2513 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    C. Salter, R. Stevenson, I. Farrer, C. Nicoll, D. Ritchie, A. Shields, Nature 465(7298), 594 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M.R. Dachner, E. Malic, M. Richter, A. Carmele, J. Kabuss, A. Wilms, J.E. Kim, G. Hartmann, J. Wolters, U. Bandelow, et al., Physica Status Solidi (b) 247(4), 809 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    A. Carmele, F. Milde, M.R. Dachner, M.B. Harouni, R. Roknizadeh, M. Richter, A. Knorr, Phys. Rev. B 81(19), 195319 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Hein, F. Schulze, A. Carmele, A. Knorr, Phys. Rev. Lett. 113(2), 027401 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, P. Petroff, Phys. Rev. Lett. 96(13), 130501 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M. Wagner, E. Stock, J. Reparaz, A. Schliwa, S. Reitzenstein et al., Phys. Rev. B 87(24), 245314 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.H. Schulze, A. Strittmatter, J. Beyer et al., Nat. Commun. 8, 14870 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    R. Winik, D. Cogan, Y. Don, I. Schwartz, L. Gantz, E.R. Schmidgall, N. Livneh, R. Rapaport, E. Buks, D. Gershoni, Phys. Rev. B 95, 235435 (2017).  https://doi.org/10.1103/PhysRevB.95.235435
  41. 41.
    S. Bounouar, C. de la Haye, M. Strauß, P. Schnauber, A. Thoma, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, Appl. Phys. Lett. 112, 153107 (2018).  https://doi.org/10.1063/1.5020242ADSCrossRefGoogle Scholar
  42. 42.
    J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, O.G. Schmidt, Nat. Commun. 6, 10067 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Lu, N.L. Naumann, J. Cerrillo, Q. Zhao, A. Knorr, A. Carmele, Phys. Rev. A 95(6), 063840 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, New J. Phys. 8(2), 29 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J.E. Avron, G. Bisker, D. Gershoni, N.H. Lindner, E.A. Meirom, R.J. Warburton, Phys. Rev. Lett. 100(12), 120501 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    S. Bounouar, M. Strauß, A. Carmele, P. Schnauber, A. Thoma, M. Gschrey, J. Schulze, A. Strittmatter, S. Rodt, A. Knorr, S. Reitzenstein, Phys. Rev. Lett. 118(23), 233601 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    C. Schrama, G. Nienhuis, H. Dijkerman, C. Steijsiger, H. Heideman, Phys. Rev. A 45(11), 8045 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    F. Hargart, M. Müller, K. Roy-Choudhury, S. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, P. Michler, Phys. Rev. B 93(11), 115308 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    P. Ardelt, M. Koller, T. Simmet, L. Hanschke, A. Bechtold, A. Regler, J. Wierzbowski, H. Riedl, J. Finley, K. Müller, Phys. Rev. B 93(16), 165305 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    S.C. Kuhn, A. Knorr, S. Reitzenstein, M. Richter, Opt. Express 24(22), 25446 (2016).  https://doi.org/10.1364/OE.24.025446, http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25446ADSCrossRefGoogle Scholar
  51. 51.
    M. Richter, A. Carmele, A. Sitek, A. Knorr, Phys. Rev. Lett. 103, 087407 (2009).  https://doi.org/10.1103/PhysRevLett.103.087407
  52. 52.
    M. Gegg, M. Richter, New J. Phys. 18(4), 043037 (2016). http://stacks.iop.org/1367-2630/18/i=4/a=043037ADSCrossRefGoogle Scholar
  53. 53.
    M. Gegg, M. Richter, Sci. Rep. 7(1), 16304 (2017).  https://doi.org/10.1038/s41598-017-16178-8ADSCrossRefGoogle Scholar
  54. 54.
    M. Richter, M. Gegg, T.S. Theuerholz, A. Knorr, Phys. Rev. B 91, 035306 (2015).  https://doi.org/10.1103/PhysRevB.91.035306
  55. 55.
    B. Chase, J. Geremia, Phys. Rev. A 78, 052101 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    B. Baragiola, B. Chase, J. Geremia, Phys. Rev. A 81, 032104 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    S. Hartmann, Quantum Inf. Comput. 16, 1333 (2016)MathSciNetGoogle Scholar
  58. 58.
    M. Xu, D. Tieri, M. Holland, Phys. Rev. A 87, 062101 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    L. Novo, T. Moroder, O. Gühne, Phys. Rev. A 88, 012305 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    F. Damanet, D. Braun, J. Martin, Phys. Rev. A 94, 033838 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Z.X. Gong, M. Xu, M. Foss-Feig, J. Thompson, A. Rey, M. Holland, A. Gorshkov, arXiv:1611.00797 (2016)
  62. 62.
    P. Kirton, J. Keeling, Phys. Rev. Lett. 118, 123602 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    M. Gegg, A. Carmele, A. Knorr, M. Richter, New J. Phys. 20(1), 013006 (2018). http://stacks.iop.org/1367-2630/20/i=1/a=013006ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    N. Shammah, N. Lambert, F. Nori, S. De Liberato, Phys. Rev. A 96, 023863 (2017)ADSCrossRefGoogle Scholar
  65. 65.
    P. Kirton, J. Keeling, New J. Phys. 20(1), 015009 (2018). http://stacks.iop.org/1367-2630/20/i=1/a=015009MathSciNetCrossRefGoogle Scholar
  66. 66.
    N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, F. Nori, arXiv:1805.05129 (2018)
  67. 67.
    T. Warnakula, M.I. Stockman, M. Premaratne, JOSA B 35(6), 1397 (2018)ADSCrossRefGoogle Scholar
  68. 68.
    S. Sarkar, J. Satchell, J. Phys. A: Math. Gen. 20, 2147 (1987)ADSCrossRefGoogle Scholar
  69. 69.
    S. Sarkar, J. Satchell, Europhys. Lett. 3, 797 (1987)ADSCrossRefGoogle Scholar
  70. 70.
    H. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker-Planck Equations (Springer, 2002)Google Scholar
  71. 71.
    S.C. Kuhn, A. Knorr, M. Richter, N. Owschimikow, M. Kolarczik, Y.I. Kaptan, U. Woggon, Phys. Rev. B 89, 201414 (2014).  https://doi.org/10.1103/PhysRevB.89.201414
  72. 72.
    F. Quochi, M. Dinu, L.N. Pfeiffer, K.W. West, C. Kerbage, R.S. Windeler, B.J. Eggleton, Phys. Rev. B 67, 235323 (2003).  https://doi.org/10.1103/PhysRevB.67.235323
  73. 73.
    G. Dasbach, T. Baars, M. Bayer, A. Larionov, A. Forchel, Phys. Rev. B 62, 13076 (2000).  https://doi.org/10.1103/PhysRevB.62.13076ADSCrossRefGoogle Scholar
  74. 74.
    S. Dommers, V.V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, D. Bimberg, Appl. Phys. Lett. 90, 033508 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Schöll, A. Knorr, Phys. Rev. Lett. 101, 256803 (2008).  https://doi.org/10.1103/PhysRevLett.101.256803
  76. 76.
    S.C. Kuhn, Theory of optical and dissipative processes in quantum dots. Ph.D. thesis, Technische Universität Berlin (2016)Google Scholar
  77. 77.
    S.C. Kuhn, M. Richter, Phys. Rev. B 90, 125308 (2014).  https://doi.org/10.1103/PhysRevB.90.125308
  78. 78.
    S.C. Kuhn, M. Richter, Proc.SPIE 9746, 9746 (2016).  https://doi.org/10.1117/12.2207635
  79. 79.
    S.C. Kuhn, M. Richter, Phys. Rev. B 91, 155309 (2015).  https://doi.org/10.1103/PhysRevB.91.155309
  80. 80.
    V. Delmonte, J.F. Specht, T. Jakubczyk, S. Höfling, M. Kamp, C. Schneider, W. Langbein, G. Nogues, M. Richter, J. Kasprzak, Phys. Rev. B 96, 041124 (2017).  https://doi.org/10.1103/PhysRevB.96.041124
  81. 81.
    J.F. Specht, M. Richter, Appl. Phys. B 122(4), 97 (2016).  https://doi.org/10.1007/s00340-016-6368-1
  82. 82.
    D. Abramavicius, B. Palmieri, D.V. Voronine, F.Šanda, S. Mukamel, Chemical Reviews 109(6), 2350 (2009).  https://doi.org/10.1021/cr800268nCrossRefGoogle Scholar
  83. 83.
    V. Chernyak, W.M. Zhang, S. Mukamel, J. Chem. Phys. 109(21), 9587 (1998). http://scitation.aip.org/content/aip/journal/jcp/109/21/10.1063/1.477621
  84. 84.
    T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, G.R. Fleming, Nature 434(7033), 625 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    T. Zhang, I. Kuznetsova, T. Meier, X. Li, R.P. Mirin, P. Thomas, S.T. Cundiff, PNAS 104(36), 14227 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    A. Nemeth, F. Milota, T. Mancal, T. Pullerits, J. Sperling, J. Hauer, H.F. Kauffmann, N. Christensson, J. Chem. Phys. 133(9) (2010).  https://doi.org/10.1063/1.3474995ADSCrossRefGoogle Scholar
  88. 88.
    J. Tollerud, J.A. Davis, JOSA B 33(7), C108 (2016). http://josab.osa.org/abstract.cfm?URI=josab-33-7-C108
  89. 89.
    R.D. Mehlenbacher, T.J. McDonough, M. Grechko, M.Y. Wu, M.S. Arnold, M.T. Zanni, Nature Comm. 6 (2015)Google Scholar
  90. 90.
    E. Cassette, J.C. Dean, G.D. Scholes, Small 12(16), 2234 (2016)CrossRefGoogle Scholar
  91. 91.
    G. Moody, M.E. Siemens, A.D. Bristow, X. Dai, A.S. Bracker, D. Gammon, S.T. Cundiff, Phys. Rev. B 83, 245316 (2011).  https://doi.org/10.1103/PhysRevB.83.245316
  92. 92.
  93. 93.
    E. Harel, S.M. Rupich, R.D. Schaller, D.V. Talapin, G.S. Engel, Phys. Rev. B 86, 075412 (2012).  https://doi.org/10.1103/PhysRevB.86.075412
  94. 94.
    G. Moody, R. Singh, H. Li, I.A. Akimov, M. Bayer, D. Reuter, A.D. Wieck, A.S. Bracker, D. Gammon, S.T. Cundiff, Phys. Rev. B 87, 041304 (2013).  https://doi.org/10.1103/PhysRevB.87.041304
  95. 95.
    G. Moody, S.T. Cundiff, Adv. Phys. X 2(3), 641 (2017).  https://doi.org/10.1080/23746149.2017.1346482. PMID: 28894306Google Scholar
  96. 96.
    M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D.V. Voronine, Science 1209206 (2011)Google Scholar
  97. 97.
    M. Richter, F. Schlosser, M. Schoth, S. Burger, F. Schmidt, A. Knorr, S. Mukamel, Phys. Rev. B 86, 085308 (2012).  https://doi.org/10.1103/PhysRevB.86.085308
  98. 98.
    F. Schlosser, A. Knorr, S. Mukamel, M. Richter, New J. Phys. 15(2), 025004 (2013). http://stacks.iop.org/1367-2630/15/i=2/a=025004ADSCrossRefGoogle Scholar
  99. 99.
    M. Krecik, S.M. Hein, M. Schoth, M. Richter, Phys. Rev. A 92, 052113 (2015).  https://doi.org/10.1103/PhysRevA.92.052113
  100. 100.
    E.W. Martin, S.T. Cundiff, Phys. Rev. B 97, 081301 (2018).  https://doi.org/10.1103/PhysRevB.97.081301
  101. 101.
    S. Goetz, D. Li, V. Kolb, J. Pflaum, T. Brixner, Opt. Express 26(4), 3915 (2018).  https://doi.org/10.1364/OE.26.003915, http://www.opticsexpress.org/abstract.cfm?URI=oe-26-4-3915ADSCrossRefGoogle Scholar
  102. 102.
    P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Science 300(5625), 1553 (2003).  https://doi.org/10.1126/science.1083433, http://science.sciencemag.org/content/300/5625/1553ADSCrossRefGoogle Scholar
  103. 103.
    J.F. Specht, A. Knorr, M. Richter, Phys. Rev. B 91, 155313 (2015).  https://doi.org/10.1103/PhysRevB.91.155313
  104. 104.
    M. Richter, K.J. Ahn, A. Knorr, A. Schliwa, D. Bimberg, M.E.A. Madjet, T. Renger, Physica Status Solidi (b) 243(10), 2302.  https://doi.org/10.1002/pssb.200668053ADSCrossRefGoogle Scholar
  105. 105.
    G.D. Scholes, D.L. Andrews, Phys. Rev. B 72, 125331 (2005).  https://doi.org/10.1103/PhysRevB.72.125331
  106. 106.
    R. Singh, M. Richter, G. Moody, M.E. Siemens, H. Li, S.T. Cundiff, Phys. Rev. B 95, 235307 (2017).  https://doi.org/10.1103/PhysRevB.95.235307
  107. 107.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sandra C. Kuhn
    • 1
  • Alexander Carmele
    • 1
  • Andreas Knorr
    • 1
  • Marten Richter
    • 1
    Email author
  1. 1.Institut für Theoretische PhysikNichtlineare Optik und Quantenelektronik, Technische Universität BerlinBerlinGermany

Personalised recommendations