Advertisement

Nitride Microcavities and Single Quantum Dots for Classical and Non-classical Light Emitters

  • G. Schmidt
  • C. Berger
  • A. DadgarEmail author
  • F. Bertram
  • P. Veit
  • S. Metzner
  • A. Strittmatter
  • J. Christen
  • S. T. Jagsch
  • M. R. Wagner
  • A. Hoffmann
Chapter
  • 203 Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)

Abstract

Microcavities with InGaN quantum wells or GaN-based quantum dots as active medium are building blocks of electrically-driven, low-threshold surface-emitting lasers or single photon emitters in the visible-to-UV spectral range. In this chapter, we highlight essential developments in epitaxial growth techniques of such nitride-based microcavities and their active regions. Modern analytical techniques for structural and optical characterization of these complex heterostructures as presented in this chapter are essential to solve remaining challenges.

Notes

Acknowledgements

We gratefully acknowledge the German Research Foundation (DFG) for financial support within the Research Instrumentation Program INST 272/148-1 and the Collaborative Research Center SFB 787 “Semiconductor Nanophotonics: Materials, Models, Devices”.

Many thanks to Silke Petzold (University of Magdeburg) for her work regarding the specimen preparation.

References

  1. 1.
    E.M. Purcell, Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  2. 2.
    H. Soda, K. Iga, C. Kitahara, Y. Suematsu, Jpn. J. Appl. Phys. 18, 2329 (1979)CrossRefADSGoogle Scholar
  3. 3.
    P.A.M. Dirac, Proceedings of the royal society of London A: mathematical. Physical and Engineering Sciences 114, 243 (1927)Google Scholar
  4. 4.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)Google Scholar
  5. 5.
    R. Butté, N. Grandjean, Semicond. Sci. Technol. 26, 014030 (2011)CrossRefADSGoogle Scholar
  6. 6.
    C. Bennett, P. Shor, IEEE Trans. Inf. Theory 44(6), 2724–2742 (1998)CrossRefGoogle Scholar
  7. 7.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge and New York, 2000)zbMATHGoogle Scholar
  8. 8.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464(7285), 45–53 (2010)CrossRefADSGoogle Scholar
  9. 9.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley, Chichester (England) and New York, 1999)Google Scholar
  10. 10.
    A.J. Shields, Nat. Photonics 1(4), 215–223 (2007)CrossRefADSGoogle Scholar
  11. 11.
    M. Grundmann, J. Christen, N.N. Ledentsov, J. Böhrer, D. Bimberg, S.S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, Phys. Rev. Lett. 74 (20), 4043–4046 (1995)Google Scholar
  12. 12.
    O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59(8), 5688–5701 (1999)CrossRefADSGoogle Scholar
  13. 13.
    P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G. Strouse, S.K. Buratto, Nature 406 (6799), 968–970 (2000)Google Scholar
  14. 14.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290(5500), 2282–2285 (2000)CrossRefADSGoogle Scholar
  15. 15.
    C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett. 86(8), 1502–1505 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science (New York, N.Y.) 295 (5552), 102–105 (2002)Google Scholar
  17. 17.
    S. Kako, C. Santori, K. Hoshino, S. Goetzinger, Y. Yamamoto, Y. Arakawa, Nat. Mater. 5, 887 (2006)CrossRefADSGoogle Scholar
  18. 18.
    M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Nano Lett. 14(2), 982–986 (2014)CrossRefADSGoogle Scholar
  19. 19.
    M. Tchernycheva, L. Nevou, L. Doyennette, F.H. Julien, E. Warde, F. Guillot, E. Monroy, E. Bellet-Amalric, T. Remmele, M. Albrecht, Phys. Rev. B 73 (12) (2006)Google Scholar
  20. 20.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89(11), 5815 (2001)CrossRefADSGoogle Scholar
  21. 21.
    H.P.D. Schenk, E. Feltin, P. Vennéguès, O. Tottereau, M. Laügt, M. Vaille, B. Beaumont, P. de Mierry, P. Gibart, S. Fernández, F. Calle, Phys. Status Solidi (a) 188, 899 (2001)Google Scholar
  22. 22.
    T. Shirasawa, N. Mochida, A. Inoue, T. Honda, T. Sakaguchi, F. Koyama, K. Iga, J. Cryst. Growth 189–190, 124 (1998)CrossRefADSGoogle Scholar
  23. 23.
    J.F. Carlin, M. Ilegems, Appl. Phys. Lett. 83, 668 (2003)CrossRefADSGoogle Scholar
  24. 24.
    J.F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, N. Grandjean, Phys. Status Solidi (b) 242, 2326 (2005)Google Scholar
  25. 25.
    C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105 (2015)CrossRefADSGoogle Scholar
  26. 26.
    C. Berger, Dissertation, Otto-von-Guericke-Universität Magdeburg (2017)Google Scholar
  27. 27.
    A. Dadgar, A. Krost, Epitaxial growth and benefits of GaN on silicon, in III-Nitride Semiconductors and their Modern Devices, ed. by B. Gil (Oxford University Press). ISBN 978-0-19-968172-3 (2013)Google Scholar
  28. 28.
    C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit , G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105 (2015)Google Scholar
  29. 29.
    J. Dorsaz, J.F. Carlin, S. Gradecak, M. Ilegems, J. Appl. Phys. 97, 084505 (2005)CrossRefADSGoogle Scholar
  30. 30.
    H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, I. Akasaki, Phys. Stat. Sol. (b) 216, 683 (1999)Google Scholar
  31. 31.
    J. Bläsing, A. Reiher, A. Dadgar, A. Diez, A. Krost, Appl. Phys. Lett. 81, 2722 (2002)CrossRefADSGoogle Scholar
  32. 32.
    E. Feltin, J.F. Carlin, J. Dorsaz, G. Christmann, R. Butté, M. Laügt, M. Ilegems, N. Grandjean, Appl. Phys. Lett. 88, 051108 (2006)CrossRefADSGoogle Scholar
  33. 33.
    T.C. Lu, J.R. Chen, S.W. Chen, H.C. Kuo, C.C. Kuo, C.C. Lee, S.C. Wang, IEEE J. Sel. Top. Quantum Electron. 15, 850 (2009)CrossRefADSGoogle Scholar
  34. 34.
    J.F. Carlin, J. Dorsaz, E. Feltin, R. Butté, N. Grandjean, M. Ilegems, M. Laügt, Appl. Phys. Lett. 86, 031107 (2005)CrossRefADSGoogle Scholar
  35. 35.
    G. Christmann, D. Simeonov, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Appl. Phys. Lett. 89, 261101 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Z. Gacevic, G. Rossbach, R. Butté, F. Réveret, M. Glauser, J. Levrat, G. Cosendey, J.F. Carlin, N. Grandjean, E. Calleja, J. Appl. Phys. 114, 233102 (2013)CrossRefADSGoogle Scholar
  37. 37.
    G. Cosendey, (In,Al)N-based blue microcavity lasers. Dissertation, École Polytechnique Fédérale de Lausanne (2013)Google Scholar
  38. 38.
    S. Kako, T. Someya, Y. Arakawa, Appl. Phys. Lett. 80, 722 (2002)CrossRefADSGoogle Scholar
  39. 39.
    F. Bertram, J. Christen, G. Schmidt, P. Veit, C. Berger, A. Krost, Microsc. Microanal. 18, 1874 (2012)CrossRefADSGoogle Scholar
  40. 40.
    M. Akazawa, B. Gao, T. Hashizume, M. Hiroki, S. Yamahata, N. Shigekawa, Appl. Phys. Lett. 98(14), 142117 (2011)CrossRefADSGoogle Scholar
  41. 41.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250–4253 (1996)CrossRefADSGoogle Scholar
  42. 42.
    V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Solid State Commun. 93, 733 (1995)CrossRefADSGoogle Scholar
  43. 43.
    L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode lasers and photonic integrated circuits. Wiley Series in Microwave and Optical Engineering, vol. 218, 2nd edn. (Wiley, Hoboken and NJ) (2012)Google Scholar
  44. 44.
    G. Schmidt, M. Müller, P. Veit, F. Bertram, J. Christen, M. Glauser, J.-F. Carlin, G. Cosendey, R. Butté, N. Grandjean, Appl. Phys. Lett. 105(3), 032101 (2014)CrossRefADSGoogle Scholar
  45. 45.
    J. Matthews, A. Blakeslee, J. Cryst. Growth 29(3), 273–280 (1975)CrossRefADSGoogle Scholar
  46. 46.
    A. Fischer, H. Kühne, H. Richter, Phys. Rev. Lett. 73, 2712 (1994)CrossRefADSGoogle Scholar
  47. 47.
    D. Holec, Y. Zhang, D.V.S. Rao, M.J. Kappers, C. McAleese, C.J. Humphreys, J. Appl. Phys. 104 (12), 123514 (2008)Google Scholar
  48. 48.
    R. People, J.C. Bean, Appl. Phys. Lett. 47(3), 322 (1985)CrossRefADSGoogle Scholar
  49. 49.
    M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, M. Kneissl, J. Cryst. Growth 310(23), 4913–4915 (2008)CrossRefADSGoogle Scholar
  50. 50.
    C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu, N.A. El-Masry, Appl. Phys. Lett. 75(18), 2776 (1999)CrossRefADSGoogle Scholar
  51. 51.
    C. Hums, MOVPE Wachstum und Eigenschaften von AlIn(Ga)N Schichten und Schichtsystemen. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg (2012)Google Scholar
  52. 52.
    B.W. Dodson, J.Y. Tsao, Appl. Phys. Lett. 51(17), 1325 (1987)CrossRefADSGoogle Scholar
  53. 53.
    A.D. Bykhovski, B.L. Gelmont, M.S. Shur, J. Appl. Phys. 81(9), 6332 (1997)CrossRefADSGoogle Scholar
  54. 54.
    M. Glauser, G. Rossbach, G. Cosendey, J. Levrat, M. Cobet, J.-F. Carlin, J. Besbas, M. Gallart, P. Gilliot, R. Butté, N. Grandjean, Phys. Status Solidi (c) 9(5), 1325–1329 (2012)CrossRefADSGoogle Scholar
  55. 55.
    G. Schmidt, Optische Nanocharakterisierung GaN-basierter Quantenstrukturen für Mikrokavitäten. Doctoral Thesis, Otto-von-Guericke-University Magdeburg, Magdeburg 2017Google Scholar
  56. 56.
    L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, A. Zunger, Appl. Phys. Lett. 74(13), 1842 (1999)CrossRefADSGoogle Scholar
  57. 57.
    D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, C.J. Humphreys, Phys. Rev. B 83 (11) (2011)Google Scholar
  58. 58.
    S. Schulz, M.A. Caro, C. Coughlan, E.P. O’Reilly, Phys. Rev. B 91 (3) (2015)Google Scholar
  59. 59.
    P.R.C. Kent, A. Zunger, Appl. Phys. Lett. 79(13), 1977 (2001)CrossRefADSGoogle Scholar
  60. 60.
    L.-W. Wang, Phys. Rev. B 63 (24) (2001)Google Scholar
  61. 61.
    S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810–816 (2006)CrossRefADSGoogle Scholar
  62. 62.
    S. Chichibu, T. Sota, K. Wada, S. Nakamura, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 16(4), 2204 (1998)CrossRefADSGoogle Scholar
  63. 63.
    D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97(10), 103508 (2005)CrossRefADSGoogle Scholar
  64. 64.
    M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, P.H. Clifton, D. Larson, D.W. Saxey, A. Cerezo, J. Appl. Phys. 104(1), 013524 (2008)CrossRefADSGoogle Scholar
  65. 65.
    Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics. Springer Tracts in Modern Physics, vol. 169 (Springer, Berlin and New York) (2000)Google Scholar
  66. 66.
    A. Kavokin, G. Malpuech, Cavity polaritons. Thin Films and Nanostructures, vol. 32, 1st edn. (Elsevier, Acad. Press, Amsterdam [u.a.]) (2003)Google Scholar
  67. 67.
    S.M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box. Wiley Series in Lasers and Applications. Wiley, New York (2005)Google Scholar
  68. 68.
    B. Deveaud, The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices (Wiley-VCH, Weinheim, 2007)Google Scholar
  69. 69.
    A. Kavokin, Microcavities. Series on Semiconductor Science and Technology, vol. 16 (Oxford University Press, Oxford) (2007)Google Scholar
  70. 70.
    A. Franke, Licht - Materie -Wechselwirkung in nitridischen Mikrokavitäten. Doctoral thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg (2012)Google Scholar
  71. 71.
    M. Glauser, C. Mounir, G. Rossbach, E. Feltin, J.-F. Carlin, R. Butté, N. Grandjean, J. Appl. Phys. 115(23), 233511 (2014)CrossRefADSGoogle Scholar
  72. 72.
    G. Schmidt, P. Veit, C. Berger, F. Bertram, A. Dadgar, A. Strittmatter, J. Christen, Jpn. J. Appl. Phys. 55, 05FF04 (2016)Google Scholar
  73. 73.
    I.N. Stranski, L. Krastanow, Sitzungsber. Akad. Wiss. Wien, Math. Naturwiss. Kl., Abt. 2B 146, 797 (1937)Google Scholar
  74. 74.
    W. Ostwald, Z. Phys, Chem. (Leipzig) 34, 495 (1990)Google Scholar
  75. 75.
    K. Poetschke, L. Mueller-Kirsch, R. Heitz, R.L. Sellin, U.W. Pohl, D. Bimberg, N. Zakharov, P. Werner, Phys. E (Amsterdam) 21, 606 (2004)CrossRefGoogle Scholar
  76. 76.
    A.E. Zhukov, A.R. Kovsh, S.S. Mikhrin, N.A. Maleev, V.M. Ustinov, D.A. Livshits, I.S. Tarasov, D.A. Bedarev, M.V. Maximov, A.F. Tsatsul’nikov, I.P. Soshnikov, P.S. Kop’ev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, Electron. Lett. 35, 1845 (1999)Google Scholar
  77. 77.
    T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004)Google Scholar
  78. 78.
    I.N. Kaiander, R.L. Sellin, T. Kettler, N.N. Ledentsov, D. Bimberg, N.D. Zakharov, P. Werner, Appl. Phys. Lett. 84, 2992 (2004)Google Scholar
  79. 79.
    G. Schmidt, C. Berger, P. Veit, S. Metzner, F. Bertram, J. Bläsing, A. Dadgar, A. Strittmatter, J. Christen, G. Callsen, S. Kalinowski, A. Hoffmann, Appl. Phys. Lett. 106, 252101 (2015)CrossRefADSGoogle Scholar
  80. 80.
    G. Hönig, G. Callsen, A. Schliwa, S. Kalinowski, C. Kindel, S. Kako, Y. Arakawa, D. Bimberg, A. Hoffmann, Nat. Commun. 5, 5721 (2014)CrossRefADSGoogle Scholar
  81. 81.
    G. Callsen, Advanced optical signatures of single, wurtzite GaN quantum dots: From fundamental exciton coupling mechanisms towards tunable photon statistics and hybrid-quasiparticles. Ph.D. thesis, TU Berlin, Berlin (2015)Google Scholar
  82. 82.
    G. Callsen, G.M.O. Pahn, S. Kalinowski, C. Kindel, J. Settke, J. Brunnmeier, C. Nenstiel, T. Kure, F. Nippert, A. Schliwa, A. Hoffmann, T. Markurt, T. Schulz, M. Albrecht, S. Kako, M. Arita, Y. Arakawa, Phys. Rev. B 92, 235439 (2015)Google Scholar
  83. 83.
    I.A. Ostapenko, Influence of defects, phonons and strain on the luminescence properties of nitride- and arsenide-based quantum dots. Ph.D. thesis, TU Berlin, Berlin (2012)Google Scholar
  84. 84.
    I.A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M.R. Dachner, M. Richter, A. Knorr, S. Kako, Y. Arakawa, Phys. Rev. B 85, 081303(R) (2012)CrossRefADSGoogle Scholar
  85. 85.
    G. Callsen, G.M.O. Pahn, Phys. Status Solidi RRL 9(9), 521–525 (2015)CrossRefGoogle Scholar
  86. 86.
    S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 85(1), 64–66 (2004)CrossRefADSGoogle Scholar
  87. 87.
    J. Renard, R. Songmuang, C. Bougerol, B. Daudin, B. Gayral, Nano Lett. 8(7), 2092–2096 (2008)CrossRefADSGoogle Scholar
  88. 88.
    S. Amloy, K.H. Yu, K.F. Karlsson, R. Farivar, T.G. Andersson, P.O. Holtz, Appl. Phys. Lett. 99, 251903 (2011)CrossRefADSGoogle Scholar
  89. 89.
    K. Choi, S. Kako, M.J. Holmes, M. Arita, Y. Arakawa, Appl. Phys. Lett. 103(17), 171907 (2013)CrossRefADSGoogle Scholar
  90. 90.
    G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M.R. Wagner, E. Stock, J.S. Reparaz, A. Schliwa, S. Reitzenstein, A. Knorr, A. Hoffmann, S. Kako, Y. Arakawa, Phys. Rev. B 87, 245314 (2013)CrossRefADSGoogle Scholar
  91. 91.
    G. Jurczak, T.D. Young, P. Dluzewski, Phys. Status Solidi C 10, 97 (2013)CrossRefADSGoogle Scholar
  92. 92.
    M. Winkelnkemper, A. Schliwa, D. Bimberg, Phys. Rev. B 74, 155322 (2006)CrossRefADSGoogle Scholar
  93. 93.
    T. Bretagnon, P. Lefebvre, P. Valvin, R. Bardoux, T. Guillet, T. Taliercio, B. Gil, N. Grandjean, F. Semond, B. Damilano, A. Dussaigne, J. Massies, Phys. Rev. B 73, 113304 (2006)CrossRefADSGoogle Scholar
  94. 94.
    R. Bardoux, T. Guillet, P. Lefebvre, T. Taliercio, T. Bretagnon, S. Rousset, B. Gil, F. Semond, Phys. Rev. B 74, 195319 (2006)CrossRefADSGoogle Scholar
  95. 95.
    G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, J.-P. Poizat, Nat. Photonics 4, 696 (2010)CrossRefADSGoogle Scholar
  96. 96.
    K. Hoshino, S. Kako, Y. Arakawa, Appl. Phys. Lett. 85, 1262 (2004)Google Scholar
  97. 97.
    G. Hönig, S. Rodt, G. Callsen, I.A. Ostapenko, T. Kure, A. Schliwa, C. Kindel, D. Bimberg, A. Hoffmann, S. Kako, Y. Arakawa, Phys. Rev. B 88, 045309 (2013)CrossRefADSGoogle Scholar
  98. 98.
    D. Simeonov, A. Dussaigne, R. Butte, N. Grandjean, Phys. Rev. B 77, 075306 (2008)CrossRefADSGoogle Scholar
  99. 99.
    S. Tomić, N. Vukmirović, Phys. Rev. B 79, 245330 (2009)Google Scholar
  100. 100.
    S. Tomić, N. Vukmirović, [Phys. Rev. B 79, 245330 (2009)], Phys. Rev. B 86, 159902(E) (2012)Google Scholar
  101. 101.
    A. Franke, M.P. Hoffmann, L. Hernandez-Balderrama, F. Kaess, I. Bryan, S. Washiyama, M. Bobea, J. Tweedie, R. Kirste, M. Gerhold, R. Collazo, Z. Sitar, Proc. SPIE 9748, 97481G (2016)CrossRefADSGoogle Scholar
  102. 102.
    T. Detchprohm, Y.S. Liu, K. Mehta, S. Wang, H. Xie, T.T. Kao, S.C. Shen, P.D. Yoder, F.A. Ponce, R.D. Dupuis, Appl. Phys. Lett. 110(1), 011105 (2017)CrossRefADSGoogle Scholar
  103. 103.
    D.M. Follstaedt, S.R. Lee, A.A. Allerman, J.A. Floro, J. Appl. Phys. 105, 083507 (2009)ADSCrossRefGoogle Scholar
  104. 104.
    B. Liu, R. Zhang, J.G. Zheng, X.L. Ji, D.Y. Fu, Z.L. Xie, D.J. Chen, P. Chen, R.L. Jiang, Y.D. Zheng, Appl. Phys. Lett. 98, 10 (2011)Google Scholar
  105. 105.
    X.L. Ji, R.L. Jiang, B. Liu, Z.L. Xie, J.J. Zhou, L. Li, P. Han, R. Zhang, Y.D. Zheng, J.G. Zheng, Phys. Status Solidi A 205, 1572 (2008)CrossRefADSGoogle Scholar
  106. 106.
    L.L. Zhang, Z.-H. Liu, X.-G. Huang, Q.-F. Li, J. Korean Phys. Soc. 65, 1101 (2014)CrossRefADSGoogle Scholar
  107. 107.
    E. Feltin, G. Christmann, J. Dorsaz, A. Castiglia, J.F. Carlin, R. Butté, N. Grandjean, S. Christopoulos, G. Baldassarri, H.V. Hogersthal, A.J.D. Grundy, P.G. Lagoudakis, J.J. Baumberg, Electron. Lett. 43, 924 (2007)CrossRefGoogle Scholar
  108. 108.
    Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, Appl. Phys. Express 1, 1211021 (2008)Google Scholar
  109. 109.
    C. Nenstiel, M. Bügler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, Hoffmann, Phys. Status Solidi RRL 9 (12) 716–721 (2015)Google Scholar
  110. 110.
    S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, A. Krost, Appl. Phys. Lett. 100, 122104 (2012)Google Scholar
  111. 111.
    C. Skierbiszewski, G. Muziol, K. Nowakowski-Szkudlarek, H. Turski, M. Siekacz, A. Feduniewicz-Zmuda, A. Nowakowska-Szkudlarek, M. Sawicka, P. Perlin, Appl. Phys. Express 11(3), 034103 (2018)Google Scholar
  112. 112.
    S. Lee, C.A. Forman, C. Lee, J. Kearns, E.C. Young, J.T. Leonard, D.A. Cohen, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Express 11(6), 062703 (2018)Google Scholar
  113. 113.
    S. Neugebauer, M.P. Hoffmann, H. Witte, J. Bläsing, A. Dadgar, A. Strittmatter, T. Niermann, M. Narodovitch, M. Lehmann, Appl. Phys. Lett. 110, 102104 (2017)Google Scholar
  114. 114.
    Armin Dadgar, Transparente leitfähige Nitride. Vak. Forsch. Prax. 30(4), 26 (2018)CrossRefGoogle Scholar
  115. 115.
    Yuhao Zhang, Daniel Piedra, Min Sun, Jonas Hennig, Armin Dadgar, Yu. Lili, Tomas Palacios, IEEE Electron Device Lett. 38, 248 (2017)Google Scholar
  116. 116.
    I.M. Watson, C. Xiong, E. Gu, M.D. Dawson, F. Rizzi, K. Bejtka, P.R. Edwards, R.W. Martin, Proceedings of SPIE, volume 6993, MEMS, MOEMS, and Micromachining III (2008), p. 69930EGoogle Scholar
  117. 117.
    D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, N. Grandjean, Appl. Phys. Lett. 92, 171102 (2008)Google Scholar
  118. 118.
    J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, M. Ilegems, Appl. Phys. Lett. 87, 072102 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • G. Schmidt
    • 1
  • C. Berger
    • 1
  • A. Dadgar
    • 1
    Email author
  • F. Bertram
    • 1
  • P. Veit
    • 1
  • S. Metzner
    • 1
  • A. Strittmatter
    • 1
  • J. Christen
    • 1
  • S. T. Jagsch
    • 2
  • M. R. Wagner
    • 2
  • A. Hoffmann
    • 2
  1. 1.Institut für Physik, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Institut für Festkörperphysik, Technische Universität BerlinBerlinGermany

Personalised recommendations