Advertisement

Mining Incrementally Closed Itemsets over Data Stream with the Technique of Batch-Update

  • Thanh-Trung Nguyen
  • Quang NguyenEmail author
  • Ngo Thanh HungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)

Abstract

Currently incremental mining techniques can be divided into two groups: direct-update technique and batch-update technique. Mining closed item sets is one of the core tasks of data mining. In addition, advances in hardware technology and information technology have created huge data streams in recent years. Therefore, mining incrementally closed item sets over data streams with the batch-update technique is necessary. Incremental algorithms are always associated with an intermediate structure such as tree, lattice, table… In the previous study, the author proposed an intermediate structure which is a linear list called constructive set. In this paper, an incremental mining algorithm based on the constructive with the batch-update technique is proposed in order to mine data streams.

Keywords

Batch-update Constructive set Data mining Data stream Incremental mining 

Notes

Acknowledgement

This work is funded by Hong Bang International University under grant code GV1907.

References

  1. 1.
    Ceglar, A., Roddick, J.F.: Incremental association mining using a closed-set lattice. J. Res. Pract. Inf. Technol. 39(1), 35–45 (2007)Google Scholar
  2. 2.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data streams at multiple time granularities. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Data Mining: Next Generation Challenges and Future Directions. AAAI/MIT (2003)Google Scholar
  4. 4.
    Gupta, A., Bhatnagar, V., Kumar, N.: Mining closed itemsets in data stream using formal concept analysis. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2010. LNCS, vol. 6263, pp. 285–296. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15105-7_23CrossRefGoogle Scholar
  5. 5.
    Hu, K., Lu, Y., Shi, C.: Incremental discovering association rules: a concept lattice approach. In: Proceeding of PAKDD99, Beijing, pp. 109–113 (1999)CrossRefGoogle Scholar
  6. 6.
    Jin, R., Agrawal, G.: An algorithm for in-core frequent itemset mining on streaming data. In: ICDM 2005 Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 210–217, 27–30 November 2005Google Scholar
  7. 7.
    La, P.-T., Le, B., Vo, B.: Incrementally building frequent closed itemset lattice. Expert Syst. Appl. 41(6), 2703–2712 (2014)CrossRefGoogle Scholar
  8. 8.
    Nguyen, T.-T.: Mining incrementally closed item sets with constructive pattern set. Expert Syst. Appl. 100, 41–67 (2018)CrossRefGoogle Scholar
  9. 9.
    Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Szathmary, L., Valtchev, P., Napoli, A., Godin, R., Boc, A., Makarenkov, V.: Fast mining of iceberg lattices: a modular approach using generators. In: CLA, volume 959 of CEUR Workshop Proceedings, pp. 191–206 (2011)Google Scholar
  11. 11.
    Szathmary, L., Valtchev, P., Napoli, A., Godin, R., Boc, A., Makarenkov, V.: A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes. Ann. Math. Artif. Intell. 70, 81–105 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Valtchev, P., Missaoui, R.: Building concept (galois) lattices from parts: generalizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44583-8_21CrossRefzbMATHGoogle Scholar
  13. 13.
    Valtchev, P., Missaoui, R., Godin, R.: A framework for incremental generation of closed itemsets. Discrete Appl. Math. 156(6), 924–949 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vo, B., Hong, T.P., Le, B.: A lattice-based approach for mining most generalization association rules. Knowl.-Based Syst. 45, 20–30 (2013)CrossRefGoogle Scholar
  15. 15.
    Totad, S.G., Geeta, R.B., Prasad Reddy, P.V.G.D.: Batch processing for incremental FP-tree construction. Int. J. Comput. Appl. IJCA 5(5), 28–32 (2010)Google Scholar
  16. 16.
    Totad, S.G., Geeta, R.B., Prasad Reddy, P.V.G.D.: Batch incremental processing for FP-tree construction using FP-Growth algorithm. Knowl. Inf. Syst. 33, 475–490 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information TechnologyHong Bang International UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Information TechnologyHo Chi Minh City University of TechnologyHo Chi Minh CityVietnam

Personalised recommendations