Exploiting Social Data to Enhance Web Search

  • Vo Hoang PhucEmail author
  • Vu Thanh NguyenEmail author
  • Le Dinh Tuan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)


With the strong growth of the internet, the search engine systems have been growing rapidly to allow web users to find relevant information with respect to their interests and needs. However, the amount of information is huge, searching information problems for users’ demands still remain many challenges. Many social platforms and networks (such as Twitter, Facebook or Delicious) which allow users to tag, share and organize their favorite web pages online using social annotations easily. Moreover, these social annotations could benefit web search because of user’s interesting tags and relevant information. Therefore, this paper proposed a search engine by combining following studies: (1) exploit social data from Twitter, (2) formulate query by personalized query expansion method using social annotations (SoQuES), (3) enhance the representation of documents and personalize them with social information (PerSaDoR), (4) use the social personalized ranking function (SoPRa) to re-rank search results. Furthermore, our experiment on Twitter data showed that our method could enhance the search engine user efficiently.


Social annotation Personalized social ranking Query expansion Information search 


  1. 1.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006). Scholar
  2. 2.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 501–510. ACM, New York (2007)Google Scholar
  3. 3.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: SIGIR (2008)Google Scholar
  4. 4.
    Zhou, D., Bian, J., Zheng, S., Zha, H., Giles, C.L.: Exploring social annotations for information retrieval. In: Proceeding of the 17th International Conference on World Wide Web (WWW 2008), New York, NY, USA, pp. 715–724 (2008)Google Scholar
  5. 5.
    Collins-Thompson, K., Callan, J.: Query expansion using random walk models. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM 2005), New York, NY, USA, pp. 704–711 (2005)Google Scholar
  6. 6.
    Yin, Z., Shokouhi, M., Craswell, N.: Query expansion using external evidence. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 362–374. Springer, Heidelberg (2009). Scholar
  7. 7.
    Bouadjenek, M.R., Hacid, H., Bouzeghoub, M.: SoPRa: a new social personalized ranking function for improving web search. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013. ACM, New York (2013)Google Scholar
  8. 8.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based user and document profiles. In: Gurrin, C., et al. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010). Scholar
  9. 9.
    Lin, Y., Lin, H., Jin, S., Ye, Z.: Social annotation in query expansion: a machine learning approach. In: SIGIR 2011 (2011)Google Scholar
  10. 10.
    Bouadjenek, M.R., Hacid, H., Bouzeghoub, M., Daigremont, J.: Personalized social query expansion using social bookmarking systems. In: Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, 25–29 July 2011 (2011)Google Scholar
  11. 11.
    Bouadjenek, M.R., Bennamane, A., Hacid, H., Bouzeghoub, M.: Evaluation of personalized social ranking functions of information retrieval. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 283–290. Springer, Heidelberg (2013). Scholar
  12. 12.
    Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and tagging. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007). Scholar
  13. 13.
    Khodaei, A., Sohangir, S., Shahabi, C.: Personalization of web search using social signals. In: Ulusoy, Ö., Tansel, A.U., Arkun, E. (eds.) Recommendation and Search in Social Networks. LNSN, pp. 139–163. Springer, Cham (2015). Scholar
  14. 14.
    He, X., Gao, M., Kan, M.-Y., Liu, Y., Sugiyama, K.: Predicting the popularity of web 2.0 items based on user comments. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2014, pp. 233–242. ACM, New York (2014)Google Scholar
  15. 15.
    Lu, M., Sun, X., Wang, S., Lo, D., Duan, Y.: Query expansion via WordNet for effective code search. In: Proceedings of IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering, pp. 545–549 (2015)Google Scholar
  16. 16.
    Nguyen, M.-T., Nguyen, M.-L.: SoRTESum: a social context framework for single-document summarization. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 3–14. Springer, Cham (2016). Scholar
  17. 17.
    Bouadjenek, M.R., Hacid, H., Bouzeghoub, M., Vakali, A.: PerSaDoR: personalized social document representation for improving web search. Inf. Sci. 369, 614–633 (2016)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Twitter - Statistics & Facts, February 2019.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Information TechnologyHo Chi Minh CityVietnam
  2. 2.Van Hien UniversityHo Chi Minh CityVietnam
  3. 3.Long An University of Economics and IndustryTân AnVietnam

Personalised recommendations