Advertisement

Visualization of Medical Images Data Based on Geometric Modeling

  • Van Sinh NguyenEmail author
  • Manh Ha Tran
  • Son Truong Le
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)

Abstract

The methods for visualizing data are considered as the graphical representation of information and data. These data are first analyzed and computed depending on the criteria and purpose of users. Thereafter, they are visualized or simulated by using visual elements like charts, graphs and maps to explore, understand their characteristics and data structure. In the studies of big data analysis or data science, the methods, tools and techniques are essential and important to analyze a massive amount of information and make data-driven decisions. Which methods or solutions are best for rendering and visualizing the analyzed data? That is still a big question; even a challenge to the researchers. In this paper, we research and implement a web-based application for visualizing the medical images data based on geometric modeling. After studying the state-of-the-art in the fields of computer graphics, images processing and geometric modeling, we combine all of them to develop an application for rendering the Dicom data. The input data are slices of 2D of an object captured from CT scanner or MRI. They are processed and reconstructed for rendering its initial shape on both 2D and 3D environment. Comparing to the existing applications, our research shown the advantages of using it in practice.

Keywords

Medical image processing Geometric modeling 3D reconstruction 3D visualization and data rendering 

References

  1. 1.
    Vimala, S., Bobi Nath, B.N.: A survey on medical images. Int. J. Adv. Res. Comput. Sci. Softw. Engi. 5(10), 673–679 (2015). ISSN: 2277 128XGoogle Scholar
  2. 2.
    Alagendran, B., Manimurugan, S.: A survey on various medical image compression techniques. Int. J. Soft Comput. Eng. (IJSCE) 2(1), 425–428 (2012). ISSN: 2231–2307Google Scholar
  3. 3.
    Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–129 (2013).  https://doi.org/10.1088/0031-9155/58/13/R97CrossRefGoogle Scholar
  4. 4.
    3D-DOCTOR: ABLE Software Corporation (2019). http://www.ablesw.com/3d-doctor/index.html
  5. 5.
    Medixant: PACS-DICOM viewer (2019). http://www.radiantviewer.com
  6. 6.
    MITK: Medical Imaging ToolKit (2019). http://www.mitk.net/
  7. 7.
    Santesoft: Medical Imaging Software (2019). http://www.santesoft.com/
  8. 8.
    Nguyen, V.S., Tran, M.H., Vu, H.M.Q.: A research on 3D model construction from 2D DICOM. In: Proceedings of International Conference on Advanced Computing and Applications (ACOMP), pp. 158–163. IEEE (2016). ISBN 978-1-5090-6143-3Google Scholar
  9. 9.
    Nguyen, V.S., Tran, M.H., Vu, H.M.Q.: An improved method for building a 3D model from 2D DICOM. In: Proceedings of International Conference on Advanced Computing and Applications (ACOMP), pp. 125–131. IEEE (2018). ISBN: 978-1-5386-9186-1Google Scholar
  10. 10.
    DICOM: Digital imaging and communications in medicine (2019). https://www.dicomstandard.org/about/
  11. 11.
    MedDream: MedDream Dicom Viewer (2019). www.softneta.com/products/meddream-dicom-viewer/
  12. 12.
    OsiriX: OsiriX Dicom Viewer (2019). https://www.osirix-viewer.com
  13. 13.
    LeadTools: DICOM Specification Overview: Basic DICOM File Structure (2019). https://www.leadtools.com/sdk/medical/dicom-spec1
  14. 14.
    MIT: Cornoerstone JS (2019). https://cornerstonejs.org
  15. 15.
    VTK: Visualization Toolkit (2019). https://www.vtk.org
  16. 16.
    AMI: AMI Medical Imaging (2019). https://medevel.com/ami-medical-imaging
  17. 17.
  18. 18.
    ITK: Insight Segmentation and Registration (2019). https://itk.org/
  19. 19.
    OpenCV: Open Computer Vision Library (2019). https://opencv.org/about/
  20. 20.
    William, E.L., Harvey, E.C.: Marching cubes: a high resolution 3D surface construction algorithm. J. Comput. Graph. 21(4) (1987)Google Scholar
  21. 21.
    Levoy, M.: Display of surfaces from volume data. J. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)CrossRefGoogle Scholar
  22. 22.
    Scott, R.: Ray casting for modeling solids. J. Comput. Graph. Image Proces. 18(2), 109–144 (1982)CrossRefGoogle Scholar
  23. 23.
    Sherekar, R.M., Pawar, A.: A MATLAB image processing approach for reconstruction of DICOM images for manufacturing of customized anatomical implants by using rapid prototypingI. Am. J. Mech. Eng. Autom. 1(5), 48–53 (2014)Google Scholar
  24. 24.
    Farzana, A., Mohamed Sathik, M.: Analysis of 2D to 3D reconstruction techniques over brain MRI. Int. J. Innovative Res. Comput. Commun. Eng. 5(5), 9370–9376 (2017) Google Scholar
  25. 25.
    Patel, A., Mehta, K.: 3D modeling and rendering of 2D medical image. In: International Conference on Communication Systems and Network Technologies, pp. 149–152 (2012). ISBN 978-0-7695-4692-6/12Google Scholar
  26. 26.
    Hsut, J., Chelbergt, D.M., Babbst, C.F.: A geometric modeling tool for visualization of human anatomical structures. In: International Conference on Communication Systems and Network Technologies, pp. 176–183. IEEE (1994). ISBN 0-8186-5802-9Google Scholar
  27. 27.
    Chen, Y., Sun, P.: The research and practice of medical image enhancement and 3D reconstruction system. In: International Conference on Robots & Intelligent System (ICRIS), pp. 350–353 (2017).  https://doi.org/10.1109/ICRIS.2017.94
  28. 28.
    Ali, I., Cem, D., Melike, S.: Review of MRI-based brain tumor image segmentation using deep learning methods. In: 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, Vienna, Austria vol. 102, pp. 317–324 (2016). Procedia Comput. Sci.Google Scholar
  29. 29.
    Ghulam, M., et al.: Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif. Intell. Rev. Int. Sci. Eng. J., 1–66 (2019). ISSN: 0269–2821Google Scholar
  30. 30.
    Ioan, V., Lacramioara, S.-T.: A survey of web based medical imaging application. In: 6th International Conference on Modern Power Systems, MPS2015, pp. 365–368 (2015)Google Scholar
  31. 31.
    Kattire, S.S., Shah, A.V.: Boundary detection algorithm implementation for medical images. Int. J. Eng. Res. Technol. (IJERT) 3(12) (2014). ISSN: 2278–0181Google Scholar
  32. 32.
    Khan, A., Kashyap, R., Gupta, R.: A modified CT image boundary detection using global information and region based method. Int. J. Innovative Res. Sci. Eng. Technol. 6(7) (2017). ISSN: 2347–6710Google Scholar
  33. 33.
    Poopathy, D., Chezian, R.M.: A survey on edge detection algorithms. Int. J. Electr. Electron. Comput. Sci. Eng. 4(5) (2017). E-ISSN: 2348–2273Google Scholar
  34. 34.
    Nguyen, V.S., Bac, A., Daniel, M.: Boundary extraction and simplification of a surface defined by a sparse 3D volume. In: Proceeding of the Third International Symposium on Information and Communication Technology SoICT 2012, pp. 115–124. ACM (2012). ISBN: 978-1-4503-1232-5Google Scholar
  35. 35.
    The test data of DICOM are downloaded from the site: MIDAS (2016). https://placid.nlm.nih.gov/community/21
  36. 36.
    Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of the 2nd Conference on Visualization (1991)Google Scholar
  37. 37.
    Our application: Dicom reader (2019). http://dicom-reader.herokuapp.com

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Van Sinh Nguyen
    • 1
    Email author
  • Manh Ha Tran
    • 2
  • Son Truong Le
    • 1
  1. 1.School of Computer Science and EngineeringInternational University - Vietnam National University of HCMCHo Chi Minh CityVietnam
  2. 2.Hong Bang International UniversityHo Chi Minh CityVietnam

Personalised recommendations