Advertisement

A New Test Suite Reduction Approach Based on Hypergraph Minimal Transversal Mining

  • Shaima Trabelsi
  • Mohamed Taha Bennani
  • Sadok Ben YahiaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)

Abstract

Test Suite Reduction (TSR) approaches aim at selecting only those test cases of a test suite to reduce the execution time or decrease the cost of regression testing. They extract the tests that cover test requirements without redundancy, or exercise changed parts of the System Under Test (SUT) or parts affected by changes, respectively. We introduce DTSR (Deterministic Test Suite Reduction), that relies on the hypergraph structural information to select the candidate test cases. Requirement data, which are associated with the test cases, optimize the selection by retaining a deterministic set. To do so, DTSR considers a test suite as a hypergraph, where its nodes are equivalent to tests, and its hyperedges are similar to requirements. The algorithm extracts a subset of the minimal transversals of a hypergraph by selecting the minimum number of test cases satisfying the requirements. We compare our new algorithm versus search based ones, and we show that we outperform the pioneering approaches of the literature. The reduction rate varies from \(50\%\) up to \(65\%\) of the initial set size.

Keywords

Test-suite reduction Hypergraphs Minimal transversal 

References

  1. 1.
    Anderson, J., Azizi, M., Salem, S., Do, H.: On the use of usage patterns from telemetry data for test case prioritization. Inf. Softw. Technol. 113, 110–130 (2019).  https://doi.org/10.1016/j.infsof.2019.05.008CrossRefGoogle Scholar
  2. 2.
    Arrieta, A., Wang, S., Markiegi, U., Arruabarrena, A., Etxeberria, L., Sagardui, G.: Pareto efficient multi-objective black-box test case selection for simulation-based testing. Inf. Softw. Technol. 114, 137–154 (2019)CrossRefGoogle Scholar
  3. 3.
    Baller, H., Lity, S., Lochau, M., Schaefer, I.: Multi-objective test suite optimization for incremental product family testing. In: Proceedings of 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation. IEEE (2014)Google Scholar
  4. 4.
    Banias, O.: Test case selection-prioritization approach based on memorization dynamic programming algorithm. Inf. Softw. Technol. 115, 119–130 (2019)CrossRefGoogle Scholar
  5. 5.
    Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. Elsevier, Amsterdam (1984)Google Scholar
  6. 6.
    Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite reduction. In: Proceedings of the 26th International Conference on Software Engineering (2004)Google Scholar
  7. 7.
    Casali, A., Cicchetti, R., Lakhal, L.: Essential patterns: a perfect cover of frequent patterns. In: Proceedings of the 7th International Conference on DaWaK, pp. 428–437. Copenhagen, Denmark (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, J., et al.: Test case prioritization for object-oriented software: an adaptive random sequence approach based on clustering. J. Syst. Softw. 135, 107–125 (2018)CrossRefGoogle Scholar
  9. 9.
    Chen, T., Lau, M.: Heuristics towards the optimization of the size of a test suite. WIT Trans. Inf. Commun. Technol. 14, 415–424 (1970)Google Scholar
  10. 10.
    Cruciani, E., Miranda, B., Verdecchia, R., Bertolino, A.: Scalable approaches for test suite reduction. In: Proceedings of the 41st International Conference on Software Engineering, pp. 419–429 (2019)Google Scholar
  11. 11.
    Garousi, V., Oezkan, R., Betin-Can, A.: Multi-objective regression test selection in practice: an empirical study in the defense software industry. Inf. Softw. Technol. 103, 40–54 (2018)CrossRefGoogle Scholar
  12. 12.
    Ghabry, I., Yahia, S.B., Jelassi, M.N.: Selection of bitmap join index: approach based on minimal transversals. In: Ordonez, C., Bellatreche, L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 302–316. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98539-8_23CrossRefGoogle Scholar
  13. 13.
    Gotlieb, A., Marijan, D.: Flower: optimal test suite reduction as a network maximum flow. In: Proceedings of the 2014 International Symposium on Software Testing and Analysis, pp. 171–180 (2014).  https://doi.org/10.1145/2610384.2610416
  14. 14.
    Hierons, R.M.: FSM quasi-equivalence testing via reduction and observing absences. Sci. Comput. Program. 177, 1–18 (2019)CrossRefGoogle Scholar
  15. 15.
    Hsu, H.Y., Orso, A.: Mints: a general framework and tool for supporting test-suite minimization. In: Proceedings of IEEE 31st International Conference on Software Engineering, pp. 419–429 (2009)Google Scholar
  16. 16.
    Jelassi, M.N., Largeron, C., Ben Yahia, S.: Efficient unveiling of multi-members in a social network. J. Syst. Softw. 94, 30–38 (2014)CrossRefGoogle Scholar
  17. 17.
    Jelassi, M.N., Largeron, C., Ben Yahia, S.: Concise representation of hypergraph minimal transversals: approach and application on the dependency inference problem. In: 9th IEEE International Conference on Research Challenges in Information Science, RCIS 2015, Athens, Greece, 13–15 May 2015, pp. 434–444 (2015)Google Scholar
  18. 18.
    Khan, S.U., Lee, S.P., Ahmad, R.W., Akhunzada, A., Chang, V.: A survey on test suite reduction frameworks and tools. Int. J. Inf. Manage. 36(6), 963–975 (2016)CrossRefGoogle Scholar
  19. 19.
    Khan, S.R., Lee, S., Javaid, N., Abdul, W.: A systematic review on test suite reduction: approaches, experiment’s quality evaluation, and guidelines. IEEE Access 6, 11816–11841 (2018)CrossRefGoogle Scholar
  20. 20.
    Kiran, A., Butt, W.H., Anwar, M.W., Azam, F., Maqbool, B.: A comprehensive investigation of modern test suite optimization trends, tools and techniques. IEEE Access 7, 89093–89117 (2019)CrossRefGoogle Scholar
  21. 21.
    Lin, J.W., Jabbarvand, R., Garcia, J., Malek, S.: Nemo: multi-criteria test-suite minimization with integer nonlinear programming. In: Proceedings IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 1039–1049 (2018)Google Scholar
  22. 22.
    Liu, Y., Li, M., Wu, Y., Li, Z.: A weighted fuzzy classification approach to identify and manipulate coincidental correct test cases for fault localization. J. Syst. Softw. 151, 20–37 (2019)CrossRefGoogle Scholar
  23. 23.
    Pradhan, D., Wang, S., Yue, T., Ali, S., Liaaen, M.: Search-based test case implantation for testing untested configurations. Inf. Softw. Technol. 111, 22–36 (2019)CrossRefGoogle Scholar
  24. 24.
    Romano, S., Scanniello, G., Antoniol, G., Marchetto, A.: Spiritus: a simple information retrieval regression test selection approach. Inf. Softw. Technol. 99, 62–80 (2018)CrossRefGoogle Scholar
  25. 25.
    Schwartz, A., Puckett, D., Meng, Y., Gay, G.: Investigating faults missed by test suites achieving high code coverage. J. Syst. Softw. 144, 106–120 (2018)CrossRefGoogle Scholar
  26. 26.
    Shi, A., Gyori, A., Mahmood, S., Zhao, P., Marinov, D.: Evaluating test-suite reduction in real software evolution. In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 84–94 (2018)Google Scholar
  27. 27.
    Wang, S., Ali, S., Gotlieb, A.: Cost-effective test suite minimization in product lines using search techniques. J. Syst. Softw. 103, 370–391 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: An empirical study of JUnit test-suite reduction. In: Proceedings of the IEEE 22nd International Symposium on Software Reliability Engineering (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations