Advertisement

Computing History-Dependent Schedules for Processes with Temporal Constraints

  • Johann EderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)

Abstract

The importance of adequate management of temporal aspects of process aware information systems is beyond dispute. A particular problem for the management of temporal constraints is to check whether a process definition is correct, where correctness is defined by history-dependent controllability. This means to check whether a history-dependent schedule exists, which obeys all temporal constraints. A schedule defines temporal execution intervals for process steps, in a history-dependent schedule a step might have several execution intervals depending on the control decisions made before this process step is activated. We present a procedure for checking the history-dependent controllability of processes with temporal constraints which is both sound and complete and effectively computes history-dependent schedules for temporally constrained business processes.

Keywords

Business process management Workflow Temporal constraints Controllability 

References

  1. 1.
    Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems. Distrib. Parallel Databases 11(3), 269–306 (2002)CrossRefGoogle Scholar
  2. 2.
    Cairo, M., Rizzi, R.: Dynamic controllability made simple. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 90. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  3. 3.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. J. Web Semant. 1(3), 281–308 (2004)CrossRefGoogle Scholar
  4. 4.
    Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspective in business process modeling: a survey and research challenges. Serv. Oriented Comput. Appl. 9(1), 75–85 (2015)CrossRefGoogle Scholar
  5. 5.
    Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Dynamic controllability via timed game automata. Acta Informatica 1–42 (2016) Google Scholar
  6. 6.
    Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal workflows. ACM Trans. Auton. Adapt. Syst. (TAAS) 7(2), 19 (2012)Google Scholar
  7. 7.
    Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic controllability of a conditional simple temporal network with uncertainty - revisited. In: Filipe, J., Fred, A. (eds.) ICAART 2013. CCIS, vol. 449, pp. 314–331. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44440-5_19CrossRefGoogle Scholar
  8. 8.
    Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_6CrossRefGoogle Scholar
  9. 9.
    Daniel, F., Pernici, B.: Insights into web service orchestration and choreography. Int. J. E-Bus. Res. (IJEBR) 2(1), 58–77 (2006)CrossRefGoogle Scholar
  10. 10.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of Business Process Management, vol. 1. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33143-5CrossRefGoogle Scholar
  12. 12.
    Eder, J., Franceschetti, M., Köpke, J.: Controllability of business processes with temporal variables. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 40–47. ACM (2019)Google Scholar
  13. 13.
    Eder, J., Franceschetti, M., Köpke, J., Oberrauner, A.: Expressiveness of temporal constraints for process models. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158, pp. 119–133. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01391-2_19CrossRefGoogle Scholar
  14. 14.
    Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional execution paths. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 243–253. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44469-6_23CrossRefGoogle Scholar
  15. 15.
    Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: Konstantas, D., Bourrières, J.P., Léonard, M., Boudjlida, N. (eds.) Interoperability of Enterprise Software and Applications, pp. 203–214. Springer, London (2006).  https://doi.org/10.1007/1-84628-152-0_19CrossRefGoogle Scholar
  16. 16.
    Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48738-7_22CrossRefGoogle Scholar
  17. 17.
    Eder, J., Panagos, E., Rabinovich, M.: Workflow time management revisited. Seminal Contributions to Information Systems Engineering, pp. 207–213. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36926-1_16CrossRefGoogle Scholar
  18. 18.
    Eder, J., Pichler, H.: Response time histograms for composite web services. In: Proceedings. IEEE International Conference on Web Services, 2004, pp. 832–833. IEEE (2004)Google Scholar
  19. 19.
    Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from process modeling to workflow automation infrastructure. Distrib. Parallel Databases 3(2), 119–153 (1995)CrossRefGoogle Scholar
  20. 20.
    Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis. In: ICWS, pp. 213–221. IEEE (2009)Google Scholar
  21. 21.
    Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018)CrossRefGoogle Scholar
  22. 22.
    Hunsberger, L., Posenato, R.: Simpler and faster algorithm for checking the dynamic consistency of conditional simple temporal networks. In: IJCAI, pp. 1324–1330 (2018)Google Scholar
  23. 23.
    Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of conditional STNs with uncertainty. arXiv preprint arXiv:1212.2005 (2012)
  24. 24.
    Hunsberger, L., Posenato, R., Combi, C.: A sound-and-complete propagation-based algorithm for checking the dynamic consistency of conditional simple temporal networks. In: Temporal Representation and Reasoning (TIME), IEEE (2015)Google Scholar
  25. 25.
    Jajodia, S., Kerschberg, L.: Advanced Transaction Models and Architectures. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4615-6217-7CrossRefzbMATHGoogle Scholar
  26. 26.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware processes at run time. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 39–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41030-7_4CrossRefGoogle Scholar
  27. 27.
    Lanz, A., Reichert, M., Weber, B.: Process time patterns: a formal foundation. Inf. Syst. 57, 38–68 (2016)CrossRefGoogle Scholar
  28. 28.
    Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2010. LNBIP, vol. 50, pp. 94–107. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13051-9_9CrossRefGoogle Scholar
  29. 29.
    Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal constraints in production workflows. Knowl. Inf. Syst. 1(2), 157–192 (1999)CrossRefGoogle Scholar
  30. 30.
    Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: AAAI, pp. 1193–1198 (2005)Google Scholar
  31. 31.
    Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45594-9_11CrossRefGoogle Scholar
  32. 32.
    Van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.B.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  33. 33.
    Zavatteri, M., Viganò, L.: Conditional simple temporal networks with uncertainty and decisions. Theor. Comput. Sci. 797, 77–101 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Informatics-SystemsAlpen-Adria Universität KlagenfurtKlagenfurtAustria

Personalised recommendations