SHACL Shapes Generation from Textual Documents

  • David ŠenkýřEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 366)


Shapes Constraint Language (SHACL) is the new recommendation by W3C consortium to uniform both describing and constraining the content of an RDF graph. Based on the inspiration of model generation from textual requirements specifications, we investigate the possibility of mapping parts of a textual document to shapes described by SHACL. In this contribution, we present our approach of the patterns (based on a grammatical inspection) that indicates candidates of domain description in SHACL language. We argue that the standard methods of linguistics can be supported by ontology resources as


SHACL Text processing Grammatical inspection Patterns Ontology RDF OWL 



This research was supported by the grant of Czech Technical University in Prague No. SGS17/211/OHK3/3T/18.


  1. 1.
    SHACL and OWL Compared. Accessed 08 Jan 2019
  2. 2.
    Arellano, A., Zontek-Carney, E., Austin, M.A.: Frameworks for natural language processing of textual requirements. Int. J. Adv. Syst. Meas. 8, 230–240 (2015)Google Scholar
  3. 3.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). Scholar
  4. 4.
    Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., Dey, N., Ashour, A.S., Ben Ghazala, H.: Automatic builder of class diagram (ABCD): an application of UML generation from functional requirements. Softw. Pract. Exp. 46(11), 1443–1458 (2016)Google Scholar
  5. 5.
    Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and Abstract Syntax. W3C recommendation, W3C (2014).
  6. 6.
    Draicchio, F., Gangemi, A., Presutti, V., Nuzzolese, A.G.: FRED: from natural language text to RDF and OWL in one click. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 263–267. Springer, Heidelberg (2013). Scholar
  7. 7.
    Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: The WebNLG challenge: generating text from RDF data. In: Proceedings of the 10th International Conference on Natural Language Generation, Spain, pp. 124–133. Association for Computational Linguistics, Santiago de Compostela (2017)Google Scholar
  8. 8.
    Guha, R., Brickley, D.: RDF Schema 1.1. W3C recommendation, W3C (2014).
  9. 9.
    Irene, P.: From OWL to SHACL in an automated way. (2018). Accessed 19 May 2019
  10. 10.
    Landhäußer, M., Körner, S.J., Tichy, W.F.: From requirements to UML models and back: how automatic processing of text can support requirements engineering. Softw. Qual. J. 22(1), 121–149 (2014)CrossRefGoogle Scholar
  11. 11.
    Martinez-Rodriguez, J.L., Lopez-Arevalo, I., Rios-Alvarado, A.B., Hernandez, J., Aldana-Bobadilla, E.: Extraction of RDF statements from text. In: Villazón-Terrazas, B., Hidalgo-Delgado, Y. (eds.) KGSWC 2019. CCIS, vol. 1029, pp. 87–101. Springer, Cham (2019). Scholar
  12. 12.
    McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C recommendation, W3C (2004).
  13. 13.
    Mylopoulos, J.: Conceptual Modelling and Telos. Conceptual Modelling, Databases and CASE: An Integrated View of Information System Development. Wiley, New York (1992)Google Scholar
  14. 14.
    Pandit, H.J., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define SHACL shapes. In: Proceedings of the 9th Workshop on Ontology Design and Patterns (WOP 2018) Co-located with 17th International Semantic Web Conference (ISWC 2018), pp. 67–71 (2018)Google Scholar
  15. 15.
    Perera, R., Nand, P., Klette, G.: RealText-lex: a lexicalization framework for RDF triples. Prague Bull. Math. Linguist. 106(1), 45–68 (2016)CrossRefGoogle Scholar
  16. 16.
    Šenkýř, D., Kroha, P.: Patterns in textual requirements specification. In: Proceedings of the 13th International Conference on Software Technologies, Porto, Portugal, pp. 197–204. SCITEPRESS - Science and Technology Publications (2018)Google Scholar
  17. 17.
    Speer, R., Havasi, C.: Representing General Relational Knowledge in ConceptNet 5. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC-2012). European Language Resources Association (ELRA) (2012)Google Scholar
  18. 18.
    Staab, S., Lehmann, J., Verborgh, R.: Structured knowledge on the Web 7.0. In: Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW 2018, Lyon, France, pp. 885–886. ACM Press (2018)Google Scholar
  19. 19.
    Taylor, A., Marcus, M., Santorini, B.: The Penn Treebank: an overview. In: Abeillé, A. (ed.) Treebanks. Text, Speech and Language Technolog, vol. 20, pp. 5–22. Springer, Dordrecht (2003). Scholar
  20. 20.
    Trisedya, B.D., Qi, J., Zhang, R., Wang, W.: GTR-LSTM: a triple encoder for sentence generation from RDF data. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, vol. 1, pp. 1627–1637. Association for Computational Linguistics (2018)Google Scholar
  21. 21.
    Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Information TechnologyCzech Technical University in PraguePragueCzech Republic

Personalised recommendations