Advertisement

Toll-Like Receptors Signaling in the Tumor Microenvironment

  • Kelly D. McCall
  • Maria Muccioli
  • Fabian BenenciaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1223)

Abstract

The involvement of inflammation in cancer progression is well-established. The immune system can play both tumor-promoting and -suppressive roles, and efforts to harness the immune system to help fight tumor growth are at the forefront of research. Of particular importance is the inflammatory profile at the site of the tumor, with respect to both the leukocyte population numbers, the phenotype of these cells, as well as the contribution of the tumor cells themselves. In this regard, the pro-inflammatory effects of pattern recognition receptor expression and activation in the tumor microenvironment have emerged as a relevant issue both for therapy and to understand tumor development.

Pattern recognition receptors (PRRs) were originally recognized as components of immune cells, particularly innate immune cells, as detectors of pathogens. PRR signaling in immune cells activates them, inducing robust antimicrobial responses. In particular, toll-like receptors (TLRs) constitute a family of membrane-bound PRRs which can recognize pathogen-associated molecular patterns (PAMPs) carried by bacteria, virus, and fungi. In addition, PRRs can recognize products generated by stressed cells or damaged tissues, namely damage-associated molecular patterns or DAMPS. Taking into account the role of the immune system in fighting tumors together with the presence of immune cells in the microenvironment of different types of tumors, strategies to activate immune cells via PRR ligands have been envisioned as an anticancer therapeutic approach.

In the last decades, it has been determined that PRRs are present and functional on nonimmune cells and that their activation in these cells contributes to the inflammation in the tumor microenvironment. Both tumor-promoting and antitumor effects have been observed when tumor cell PRRs are activated. This argues against nonspecific activation of PRR ligands in the tumor microenvironment as a therapeutic approach. Therefore, the use of PRR ligands for anticancer therapy might benefit from strategies that specifically deliver these ligands to immune cells, thus avoiding tumor cells in some settings. This review focuses on these aspects of TLR signaling in the tumor microenvironment.

Keywords

Toll-like receptors (TLRs) Pathogen-associated molecular patterns (PAMPs) Damage-associated molecular patterns (DAMPs) Pathogen recognition receptors (PRRs) Inflammation Growth factors MDA5 RIG-I Cancer Tumor microenvironment Cancer therapy Inflammation Macrophages Dendritic cells Ismmunosuppression 

Notes

Acknowledgments

This work was supported in part by the NIH under Grant R15 CA137499-01 (FB), a startup fund from OU (FB), a Research and Scholarly Awards Committee grant (RP1206) from the Heritage College of Osteopathic Medicine, OU; and Ohio University-Baker Funds Award (FN1006078). Figures were created using the Library of Science and Medical Illustrations free resource (https://www.somersault1824.com/science-illustrations/)

References

  1. 1.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nelson D, Ganss R (2006) Tumor growth or regression: powered by inflammation. J Leukoc Biol 80(4):685–690PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272(5258):50–53PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1):11–22PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50(8):391–396PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lavoue V et al (2013) Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer. J Transl Med 11:147PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Schwartz AL et al (2009) Phenylmethimazole decreases toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 15(12):4114–4122PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ruegg C (2006) Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol 80(4):682–684PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ronnov-Jessen L et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72(13):3125–3130PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ostrand-Rosenberg S et al (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26PubMedPubMedCentralGoogle Scholar
  22. 22.
    Conejo-Garcia JR et al (2005) Vascular leukocytes contribute to tumor vascularization. Blood 105(2):679–681PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Coussens LM, Pollard JW (2011) Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol 3(3).  https://doi.org/10.1101/cshperspect.a003285Google Scholar
  24. 24.
    Scarlett UK et al (2012) Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 209(3):495–506PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hoption Cann SA et al (2002) Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 58(2):115–119PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zamai L et al (2007) NK cells and cancer. J Immunol 178(7):4011–4016PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Marcus A et al (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Scarlett UK et al (2009) In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res 69(18):7329–7337PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cubillos-Ruiz JR, Rutkowski M, Conejo-Garcia JR (2010) Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle 9(2):260–268PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Benencia F, Muccioli M, Alnaeeli M (2014) Perspectives on reprograming cancer-associated dendritic cells for anti-tumor therapies. Front Oncol 4:72PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Adams M et al (2005) The rationale for combined chemo/immunotherapy using a toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine 23(17–18):2374–2378PubMedPubMedCentralGoogle Scholar
  33. 33.
    Sica A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dang Y et al (2018) TLR8 ligation induces apoptosis of monocytic myeloid-derived suppressor cells. J Leukoc Biol 103(1):157–164PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yu L, Chen S (2008) Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother 57(9):1271–1278PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Smits EL et al (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13(8):859–875PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Smith AL, Robin TP, Ford HL (2012) Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res 18(17):4514–4521PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Muccioli M et al (2018) Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 9(94):36666–36683PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Guo Y et al (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Venkatesh A et al (2018) Regulation of inflammatory factors by double-stranded RNA receptors in breast cancer cells. Immunobiology 223(6–7):466–476PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Goutagny N et al (2012) Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 7(1):29–54CrossRefGoogle Scholar
  42. 42.
    Guiducci C et al (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65(8):3437–3446PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schwartz AL et al (2017) TLR signaling inhibitor, phenylmethimazole, in combination with tamoxifen inhibits human breast cancer cell viability and migration. Oncotarget 8(69):113295–113302PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Auerbach O et al (1961) Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med 265:253–267PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Seitz HK, Simanowski UA (1988) Alcohol and carcinogenesis. Annu Rev Nutr 8:99–119PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Conejo-Garcia JR et al (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-a. Nat Med 10(9):950–958PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Huarte E et al (2008) Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res 68(18):7684–7691PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Curiel TJ et al (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Riboldi E et al (2005) Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 175(5):2788–2792PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Conrad C et al (2012) Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res 72(20):5240–5249PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mantovani A et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hagemann T et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176(8):5023–5032PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Heusinkveld M, van der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang X et al (2013) Interaction of monocytes/macrophages with ovarian cancer cells promotes angiogenesis in vitro. Cancer Sci 104(4):516–523PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Goyne HE et al (2014) Ovarian tumor ascites CD14+ cells suppress dendritic cell-activated CD4+ T-cell responses through IL-10 secretion and indoleamine 2,3-dioxygenase. J Immunother 37(3):163–169PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hernandez L et al (2010) Activation of NF-kappaB signaling by inhibitor of NF-kappaB kinase beta increases aggressiveness of ovarian cancer. Cancer Res 70(10):4005–4014PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karin M et al (2002) NF-kappa B in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wu Y, Zhou BP (2010) TNF-alpha/NF-kappa B/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Annunziata CM et al (2010) Nuclear factor kappa B transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer 116(13):3276–3284PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Killeen SD et al (2006) Exploitation of the toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer 95(3):247–252PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen KQ et al (2007) Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7(10):1271–1285PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chuang HC et al (2012) Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol 48(3):226–232PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    McCall KD et al (2007) High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology 148(9):4226–4237PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Noori MS et al (2017) Phenylmethimazole and a thiazole derivative of phenylmethimazole inhibit IL-6 expression by triple negative breast cancer cells. Eur J Pharmacol 803:130–137PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bellora F et al (2014) TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol 44(6):1814–1822PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chefetz I et al (2013) TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle 12(3):511–521PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Conforti R et al (2010) Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res 70(2):490–500PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    He WG et al (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44(11):2850–2859PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kelly MG et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66(7):3859–3868PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Matijevic T, Pavelic J (2011) The dual role of TLR3 in metastatic cell line. Clin Exp Metastasis 28(7):701–712PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Salaun B et al (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176(8):4894–4901PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Woods DC et al (2011) TLR4 activates NF-kappa B in human ovarian granulosa tumor cells. Biochem Biophys Res Commun 409(4):675–680PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111(7):927–930PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Matsukura S et al (2007) Role of RIG-I, MDA-5, and PKR on the expression of inflammatory chemokines induced by synthetic dsRNA in airway epithelial cells. Int Arch Allergy Immunol 143:80–83PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Chen R et al (2007) Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol 57(2):93–107PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zhou MF et al (2009) Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother 58(9):1375–1385PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    O’Neill LA (2003) Therapeutic targeting of toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol 3(4):396–403PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Matijevic T, Marjanovic M, Pavelic J (2009) Functionally active Toll-like receptor 3 on human primary and metastatic cancer cells. Scand J Immunol 70(1):18–24PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18(4):e27PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Muccioli M et al (2012) Toll-like receptors as novel therapeutic targets for ovarian cancer. ISRN Oncol 2012:642141PubMedPubMedCentralGoogle Scholar
  86. 86.
    Huang B et al (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27(2):218–224PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Muccioli M, Benencia F (2014) Toll-like receptors in ovarian cancer as targets for immunotherapies. Front Immunol 5:341PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen R et al (2008) Cancers take their Toll–the function and regulation of Toll-like receptors in cancer cells. Oncogene 27(2):225–233PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Seya T, Matsumoto M (2009) The extrinsic RNA-sensing pathway for adjuvant immunotherapy of cancer. Cancer Immunol Immunother 58(8):1175–1184PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Harii N et al (2005) Thyrocytes express a functional toll-like receptor 3: overexpression can be induced by viral infection and reversed by phenylmethimazole and is associated with Hashimoto’s autoimmune thyroiditis. Mol Endocrinol 19(5):1231–1250PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Wong FS et al (2008) The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann N Y Acad Sci 1150:146–148PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    McCall KD et al (2013) Phenylmethimazole suppresses dsRNA-induced cytotoxicity and inflammatory cytokines in murine pancreatic Beta cells and blocks viral acceleration of type 1 diabetes in NOD mice. Molecules 18(4):3841–3858PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bsibsi M et al (2002) Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61(11):1013–1021PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Van DN et al (2012) Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics. FASEB J 26(8):3188–3198PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816–825PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Krown SE et al (1985) Phase-I trials of Poly(I,C) complexes in advanced cancer. J Biol Response Mod 4(6):640–649PubMedPubMedCentralGoogle Scholar
  100. 100.
    Robinson RA et al (1976) Phase 1-2 trial of multiple-dose polyriboinosinic-polyribocytidylic acid in patients with Leukemia or solid tumors. J Natl Cancer Inst 57(3):599–602PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Geller MA et al (2010) Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol Immunother 59(12):1877–1884PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ayari C et al (2016) Poly(I:C) potentiates bacillus Calmette-Guerin immunotherapy for bladder cancer. Cancer Immunol Immunother 65(2):223–234PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yi DH et al (2018) 3-day monocyte-derived dendritic cells stimulated with a combination of OK432, TLR7/8 ligand, and prostaglandin E2 are a promising alternative for cancer immunotherapy. Cancer Immunol Immunother 67(10):1611–1620PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Pearson FE et al (2018) Activation of human CD141(+) and CD1c(+) dendritic cells in vivo with combined TLR3 and TLR7/8 ligation. Immunol Cell Biol 96(4):390–400PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wu CC et al (2016) A toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population. Oncotarget 7(21):30804–30819PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nocera DA et al (2016) In vivo visualizing the IFN-beta response required for tumor growth control in a therapeutic model of Polyadenylic-Polyuridylic acid administration. J Immunol 196(6):2860–2869PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Wang S et al (2016) Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 113(46):E7240–E7249PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang D et al (2018) Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol 53(3):1193–1203PubMedPubMedCentralGoogle Scholar
  109. 109.
    Liu MG et al (2019) Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don’t-eat-me’ signal. Nat Immunol 20(3):265–275PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rodell CB et al (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2(8):578–588PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Klauber TCB et al (2017) Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 53:367–377PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Dietsch GN et al (2016) Coordinated activation of Toll-like Receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites Tumoricidal natural killer cell activity. PLoS One 11(2):e0148764PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yang H et al (2016) The toll-like receptor 5 agonist entolimod suppresses hepatic metastases in a murine model of ocular melanoma via an NK cell-dependent mechanism. Oncotarget 7(3):2936–2950PubMedPubMedCentralGoogle Scholar
  114. 114.
    Brackett CM et al (2016) Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8(+) T-cell axis. Proc Natl Acad Sci U S A 113(7):E874–E883PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Cho JH et al (2017) The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget 8(15):24932–24948PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Dovedi SJ et al (2016) Intravenous administration of the selective toll-like receptor 7 agonist DSR-29133 leads to anti-tumor efficacy in murine solid tumor models which can be potentiated by combination with fractionated radiotherapy. Oncotarget 7(13):17035–17046PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yoshida S et al (2018) Toll-like receptor 3 signal augments radiation-induced tumor growth retardation in a murine model. Cancer Sci 109(4):956–965PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bauer AK et al (2017) Toll-like receptor expression in human non-small cell lung carcinoma: potential prognostic indicators of disease. Oncotarget 8(54):91860–91875PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lanki MA et al (2018) Toll-like receptor 2 and toll-like receptor 4 predict favorable prognosis in local pancreatic cancer. Tumour Biol 40(9):1010428318801188PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kusuhara Y et al (2019) Low expression of Toll-like receptor 4 is associated with poor prognosis in bladder cancer. Anticancer Res 39(2):703–711PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Jiang Q, Wei HM, Tian ZG (2008) Poly I: C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Peng GY et al (2005) Toll-like, receptor 8-mediated reversal of CD4(+) regulatory T cell function. Science 309(5739):1380–1384PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lu H et al (2012) VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 18(2):499–509PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kohtz PD et al (2019) Toll-like Receptor-4 is a mediator of proliferation in esophageal adenocarcinoma. Ann Thorac Surg 107(1):233–241PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Huhta H et al (2016) Toll-like receptors 1, 2, 4 and 6 in esophageal epithelium, Barrett’s esophagus, dysplasia and adenocarcinoma. Oncotarget 7(17):23658–23667PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sun YL et al (2016) Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res 347(2):274–282PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Huy H et al (2018) TLR4/NF-kappa B axis induces fludarabine resistance by suppressing TXNIP expression in acute myeloid leukemia cells. Biochem Biophys Res Commun 506(1):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Sootichote R et al (2018) Compound a attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 18(1):231PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Messaritakis I et al (2018) Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One 13(6):e0197327PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Block MS et al (2018) MyD88 and TLR4 expression in epithelial ovarian cancer. Mayo Clin Proc 93(3):307–320PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wu K et al (2018) TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 18(3):3411–3420PubMedPubMedCentralGoogle Scholar
  132. 132.
    Jiang N et al (2017) Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-kappaB pathway. Tumour Biol 39(6):1010428317710586PubMedPubMedCentralGoogle Scholar
  133. 133.
    Palani CD et al (2018) Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases (1/2). Oncotarget 9(6):6814–6829PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mastorci K et al (2016) Toll-like receptor 1/2 and 5 ligands enhance the expression of Cyclin D1 and D3 and induce proliferation in mantle cell lymphoma. PLoS One 11(4):e0153823PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ikehata N et al (2018) Toll-like receptor 2 activation implicated in oral squamous cell carcinoma development. Biochem Biophys Res Commun 495(3):2227–2234PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Liu B et al (2016) TLR2 promotes human intrahepatic cholangiocarcinoma cell migration and invasion by modulating NF-kappaB pathway-mediated inflammatory responses. FEBS J 283(20):3839–3850PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Li CL et al (2019) TLR2 promotes development and progression of human glioma via enhancing autophagy. Gene 700:52–59PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    West AC et al (2017) Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene 36(36):5134–5144PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Maslinska D et al (2015) Toll-like receptor 2 (TLR2) is a marker of angiogenesis in the necrotic area of human medulloblastoma. Folia Neuropathol 53(4):347–354PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Gowing SD et al (2017) Gram-positive pneumonia augments non-small cell lung cancer metastasis via host toll-like receptor 2 activation. Int J Cancer 141(3):561–571PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bugge M et al (2017) Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 292(37):15408–15425PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Veyrat M et al (2016) Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 7(50):82580–82593PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Boes M, Meyer-Wentrup F (2015) TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett 361(1):49–56PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Maitra R et al (2017) Toll like receptor 3 as an immunotherapeutic target for KRAS mutated colorectal cancer. Oncotarget 8(21):35138–35153PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Jing YB et al (2015) Up-regulation of Toll-like receptor 9 in osteosarcoma. Anticancer Res 35(11):5839–5843PubMedPubMedCentralGoogle Scholar
  146. 146.
    Won H et al (2017) TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol 102(2):423–436PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sandholm J et al (2016) Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo. Oncotarget 7(52):87373–87389PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kelly D. McCall
    • 1
    • 2
    • 3
  • Maria Muccioli
    • 4
  • Fabian Benencia
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Specialty Medicine, Heritage College of Osteopathic MedicineOhio UniversityAthensUSA
  2. 2.Molecular and Cellular Biology ProgramOhio UniversityAthensUSA
  3. 3.Diabetes InstituteOhio UniversityAthensUSA
  4. 4.Department of Biomedical Sciences, Heritage College of Osteopathic MedicineOhio UniversityAthensUSA

Personalised recommendations