MCDM as the Tool of Intelligent Decision Making in Transport. Case Study Analysis

  • Barbara GalińskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1091)


Nowadays, the decision-making process is often affected by various risk factors, which may have negative consequences and lead to wrongful decisions. In these circumstances, the meaning of ‘intelligence’ aspect is gaining in importance as it highly enhances the possibility of making the right decision. One of the tool used in Intelligent Decision Making is Multiple Criteria Decision Making (MCDM) Methodology, application of which highly increases rationality in the selection process. It is composed of various methods, classified by the author as the intelligent tools. Additionally, Intelligent Decision Making models are very useful in various sectors of economy, including transportation sector. The typical decision problem may be e.g. the process of evaluating and selecting transportation systems and their components, such as logistics operators for example. Yet, the cooperation with the specialised, effective logistic operator may determine the success of the whole transportation process in the company. Therefore, the process of evaluating and selecting the main and the key logistics operators should be carefully considered and based on the intelligent approach. Pursuant to the main idea of the article, for Intelligent Decision Making can be used e.g. MCDM Methodology and its various methods. One of them – Promethee II will be applied, in order to make the right decision during the selection of the most desired variant – logistics operator.


Decision making Intelligence Transportation Multi-criteria decision making Promethee II method Logistics management Management 


  1. 1.
    Lu, J., Zhang, G., Ruan, D., Wu, F.: Multi-Objective Group Decision Making: Methods, Software and Applications with Fuzzy Set Techniques. Imperial College Press, London (2014)zbMATHGoogle Scholar
  2. 2.
    Simon, H.A.: The New Science of Management Decision. Prentice-Hall, Englewood Cliffs (1977)Google Scholar
  3. 3.
    Simon, H.A.: Administrative Behavior. The Free Press, New York (1997)Google Scholar
  4. 4.
    Żak, J.: The concept of intelligent decision making in logistics. In: CLC 2012 Conference, Jeseník, Czech Republic (2012)Google Scholar
  5. 5.
    Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Systems. Pearson Prentice Hall, New Jersey (2005)Google Scholar
  6. 6.
    Sierpiński, G., Staniek, M., Celiński, I.: New methods for pro-ecological travel behavior learning. In: 8th International Conference of Education, Research and Innovation (ICERI 2015), Seville, Spain, pp. 6926–6933 (2015)Google Scholar
  7. 7.
    Sierpinski, G., Staniek, M.: Education by access to visual information methodology of moulding behaviour based on international research project experiences. In: 9th International Conference of Education, Research and Innovation (ICERI 2016), Seville, Spain, pp. 6724–6729 (2016)Google Scholar
  8. 8.
    Galińska, B.: Intelligent decision making in transport. Evaluation of transportation modes (types of vehicles) based on multiple criteria methodology. In: Sierpiński, G. (ed.) Advances in Intelligent Systems and Computing: Integration as Solution for Advanced Smart Urban Transport Systems, vol. 844, pp. 161–172. Springer, Cham (2019)CrossRefGoogle Scholar
  9. 9.
    Sierpiński, G., Celiński, I., Staniek, M.: The model of modal split organisation in wide urban areas using contemporary telematic systems. In: 3rd International Conference on Transportation Information and Safety, Wuhan, China, pp. 277–283 (2015)Google Scholar
  10. 10.
    Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill, New York (1990)zbMATHGoogle Scholar
  11. 11.
    Żak, J.: Application of operations research techniques to the redesign of the distribution systems. In: Dangelmaier, W., Blecken, A., Delius, R., Klöpfer, S. (eds.) Advanced Manufacturing and Sustainable Logistics. Paderborn, Germany (2010)Google Scholar
  12. 12.
    Roy, B.: Decision-aid and decision making. Eur. J. Oper. Res. 45, 324–331 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis. State of the Art Surveys. Springer, New York (2005)CrossRefGoogle Scholar
  14. 14.
    Doumpos, M., Evangelos, G.: Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  15. 15.
    Vincke, P.: Multicriteria Decision-Aid. Wiley, Chichester (1992)zbMATHGoogle Scholar
  16. 16.
    Żak, J.: Multiple Criteria Decision Aiding in Road Transportation. Poznan University of Technology Publishers, Poznan (2005)Google Scholar
  17. 17.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Bana e Costa, C. (ed.) Readings in Multiple Criteria Decision Aid. Springer, Berlin (1990)CrossRefGoogle Scholar
  18. 18.
    Żak, J.: Comparative analysis of multiple criteria evaluations of suppliers in different industries. Transp. Res. Procedia 10, 809–819 (2015)CrossRefGoogle Scholar
  19. 19.
    Książek, M., Nowak, P., Kivrak, S., Rosłon, J., Ustinovichius, L.: Computer-aided decision-making in construction project development. J. Civ. Eng. Manag. 21(2), 248–259 (2015)CrossRefGoogle Scholar
  20. 20.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objectives. Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  21. 21.
    Żak, J.: Design and evaluation of transportation systems. In: Sierpiński, G. (ed.) Advances in Intelligent Systems and Computing: Advanced Solutions of Transport Systems for Growing Mobility, vol. 631, pp. 3–29. Springer, Cham (2018)CrossRefGoogle Scholar
  22. 22.
    Pardalos, P.M., Siskos, Y., Zopounidis, C.: Advances in Multicriteria Analysis. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  23. 23.
    Saaty, T.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)CrossRefGoogle Scholar
  24. 24.
    Saaty, T.: The Analytic Hierarchy Process: Planning, Priority Setting. Resource Allocation. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  25. 25.
    Saaty, T.: Transport planning with multiple criteria: the analytic hierarchy process applications and progress review. J. Adv. Transp. 29, 81–126 (1995)CrossRefGoogle Scholar
  26. 26.
    Downarowicz, O., Krause, J., Sikorski, M., Stachowski, W.: Zastosowanie metody AHP do oceny i sterowania poziomem bezpieczeństwa złożonego obiektu technicznego. Wydawnictwo Naukowe Politechniki Gdańskiej, Gdańsk (2000)Google Scholar
  27. 27.
    Saaty, T.: Decision Making with Dependence and Feedback. The Analytic Network Process. RWS Publications, Pittsburgh (1996)Google Scholar
  28. 28.
    Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multi criteria decision-making, the UTA method. Eur. J. Oper. Res. 10, 151–164 (1982)CrossRefGoogle Scholar
  29. 29.
    Żak, J., Bieńczak, M., Fierek, S., Kruszński, M., Ratajczak, J., Sawicka, H., Żmuda-Trzebiatowski, P.: Zastosowanie metodyki wielokryterialnego wspomagania decyzji (WWD) do rozwiązywania wybranych problemów decyzyjnych związanych z zarządzaniem miastem. Wydawnictwo Naukowe Politechniki Poznańskiej, Poznań (2010)Google Scholar
  30. 30.
    Ishizaka, A., Nemery, P.: Multi-Criteria Decision Analysis: Methods and Software. Wiley, New York (2013)CrossRefGoogle Scholar
  31. 31.
    Nowak, M.: Preference and veto thresholds in multicriteria analysis based on stochastic dominance. Eur. J. Oper. Res. 158, 339–350 (2004)CrossRefGoogle Scholar
  32. 32.
    Brans, J.P., Mareschal, B., Vincke, P.H.: PROMETHEE: a new family of outranking methods in MCDM. In: Brans, J.P. (ed.) International Federation of Operational Research Studies, IFORS 1984, North Holland, Amsterdam, pp. 470–490 (1984)Google Scholar
  33. 33.
    Brans, J.P., Vincke, P.H., Mareschal, B.: How to select and how to rank projects: the PROMETHEE method. Eur. J. Oper. Res. 24, 228–238 (1986)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kun-Huang, H.: Quantitative Modelling in Marketing and Management. World Scientific Publishing, Singapore (2014)Google Scholar
  35. 35.
    Trzaskalik, T.: Wielokryterialne wspomaganie decyzji. Przegląd metod i zastosowań. Zeszyty Naukowe Politechniki Śląskiej, seria Organizacja i Zarządzanie 74, 239–263 (2014)Google Scholar
  36. 36.
    Żak, J., Galińska, B.: Design and evaluation of global freight transportation solutions (Corridors) analysis of a real world case study. Transp. Res. Proc. 30, 350–362 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Lodz University of TechnologyLodzPoland

Personalised recommendations