Advertisement

Hybrid Reasoning on a Bipolar Argumentation Framework

  • Tatsuki Kawasaki
  • Sosuke Moriguchi
  • Kazuko TakahashiEmail author
Conference paper
  • 143 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11940)

Abstract

We develop a method of reasoning using an incrementally constructed bipolar argumentation framework (BAF) aiming to apply computational argumentation to legal reasoning. A BAF that explains the judgment of a certain case is constructed based on the user’s knowledge and recognition. More specifically, a set of effective laws are derived as the conclusions from evidential facts recognized by the user, in a bottom-up manner; conversely, the evidences required to derive a new conclusion are identified if certain conditions are added, in a top-down manner. The BAF is incrementally constructed by repeated exercise of this bidirectional reasoning. The method provides support for those who are not familiar with the law, so that they can understand the judgment process and identify strategies that might allow them to win their case.

Keywords

Argumentation Bidirectional reasoning Legal reasoning 

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP17H06103.

References

  1. 1.
    Alfano, G., Greco, S., Parisi, F.: A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intelligenza Artificiale 12(2), 193–211 (2018)CrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.C., Livet, P.: On bipolarity in argumentation frameworks. Int. J. Intell. Syst. 23(10), 1062–1093 (2008)CrossRefGoogle Scholar
  3. 3.
    Baumann, R., Ulbricht, M.: If nothing is accepted - repairing argumentation frameworks. In: Proceedings of KR 2010, pp. 108–117 (2018)Google Scholar
  4. 4.
    Bench-Capon, T., Prakken, H., Sartor, G.: Argumentation in legal reasoning. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 363–382. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-98197-0_18CrossRefGoogle Scholar
  5. 5.
    Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Support in abstract argumentation. In: Proceedings of COMMA 2010, pp. 40–51 (2010)Google Scholar
  7. 7.
    Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of KR 2010, pp. 102–111 (2010)Google Scholar
  8. 8.
    Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract dialectical frameworks revisited. In: Proceedings of IJCAI 2013, pp. 803–809 (2013)Google Scholar
  9. 9.
    Caminada, M.: On the issue of reinstatement in argumentation. In: Proceedings of JELIA 2006, 111–123 (2006)Google Scholar
  10. 10.
    Cayrol, C., Lagasquie-Schiex, M.: On the acceptability of arguments in bipolar argumentation frameworks. In: Proceedings of ECSQARU 2005, pp. 378–389 (2005)zbMATHGoogle Scholar
  11. 11.
    Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.: Change in abstract argumentation frameworks: adding an argument. J. Artif. Intell. Res. 28, 49–84 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cohen, A., Gottifredi, S., Garcia, A., Simari, G.: A survey of different approaches to support in argumentation systems. Knowl. Eng. Rev. 29(5), 513–550 (2013)CrossRefGoogle Scholar
  13. 13.
    C̆yras, K., Schulz, C., Toni, F.: Capturing bipolar argumentation in non-flat assumption-based argumentation. In: Proceedings of PRIMA 2017, pp. 386–402 (2017)Google Scholar
  14. 14.
    Doutre, S., Jean-Guyb, M.: Constraints and changes: a survey of abstract argumentation dynamics. Argum. Comput. 9(3), 223–248 (2018)CrossRefGoogle Scholar
  15. 15.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kakas, A.C., Moraitis, P.: Argumentative agent deliberation, roles and context. Electron. Notes Theor. Comput. Sci. 70, 39–53 (2002)CrossRefGoogle Scholar
  17. 17.
    Kawasaki, T., Moriguchi, S., Takahashi, K.: Transformation from PROLEG to a bipolar argumentation framework. In: Proceedings of SAFA 2018, pp. 36–47 (2018)Google Scholar
  18. 18.
    Nouioua, F., Risch, V.: Argumentation framework with necessities. In: Proceedings of SUM 2011, pp. 163–176 (2011)Google Scholar
  19. 19.
    Poole, D.: Logical framework for default reasoning. Artif. Intell. 36, 27–47 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Prakken, H., Sartor, G.: Law and logic: a review from an argumentation perspective. Artif. Intell. 36, 214–245 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-98197-0CrossRefGoogle Scholar
  22. 22.
    Sakama, C.: Abduction in argumentation frameworks. J. Appl. Non-Class. Log. 28, 218–239 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Satoh, K., et al.: PROLEG: an implementation of the presupposed ultimate fact theory of Japanese civil code by PROLOG technology. In: Onada, T., Bekki, D., McCready, E. (eds.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 153–164. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25655-4_14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tatsuki Kawasaki
    • 1
  • Sosuke Moriguchi
    • 1
  • Kazuko Takahashi
    • 1
    Email author
  1. 1.Kwansei Gakuin UniversitySandaJapan

Personalised recommendations