Advertisement

Polymer Nanocomposites for Fire Retardant Applications

  • Suprakas Sinha Ray
  • Malkappa Kuruma
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 294)

Abstract

Recently, nanostructured materials have drawn significant attention for increasing the fire safety of polymer materials and also to overcome several drawbacks of pure polymer materials.

References

  1. 1.
    X. Wang, L. Wu, J. Li, Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2 and triphenylphosphate. J. Therm. Anal. Calorim. 103, 741–746 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Lewin, M. Endo, Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym. Adv. Technol. 14, 3–11 (2003)CrossRefGoogle Scholar
  3. 3.
    H.Y. Ma, L.F. Tong, Z.B. Xu, Z.P. Fang, Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. Adv. Func. Mater. 18, 414–421 (2008)CrossRefGoogle Scholar
  4. 4.
    A.B. Morgan, Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 17, 206–217 (2006)CrossRefGoogle Scholar
  5. 5.
    Z.Y. Wang, E.H. Han, W. Ke, Fire-resistant effect of nanoclay on intumescent nanocomposite coatings. J. Appl. Polym. Sci. 103, 1681–1689 (2007)CrossRefGoogle Scholar
  6. 6.
    B. Yuan, Y. Hu, X. Chen, Y. Shi, Y. Niu, Y. Zhang, S. He, H. Dai, Dual modification of graphene by polymeric flame retardant and Ni (OH) 2 nanosheets for improving flame retardancy of polypropylene. Compos. A Appl. Sci. Manuf. 100, 106–117 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Dallavalle, N. Sändig, F. Zerbetto, Stability, dynamics, and lubrication of MoS2 platelets and nanotubes. Langmuir 28, 7393–7400 (2012)PubMedCrossRefGoogle Scholar
  8. 8.
    K. Apaydin, A. Laachachi, V. Ball, M. Jimenez, S. Bourbigot, V. Toniazzo, D. Ruch, Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym. Degrad. Stab. 98, 627–634 (2013)CrossRefGoogle Scholar
  9. 9.
    E.N. Kalali, X. Wang, D.-Y. Wang, Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin. J. Mater. Chem. A 4, 2147–2157 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Matusinovic, C.A. Wilkie, Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J. Mater. Chem. 22, 18701–18704 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Yang, Y. Hu, L. Song, S. Nie, S. He, Y. Cai, Catalyzing carbonization function of α-ZrP based intumescent fire retardant polypropylene nanocomposites. Polym. Degrad. Stab. 93, 2014–2018 (2008)CrossRefGoogle Scholar
  12. 12.
    P. Lv, Z. Wang, Y. Hu, M. Yu, Effect of metallic oxides in polypropylene composites containing melamine phosphate and pentaerythritol. Plast. Rubber Compos. 37, 311–318 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Lewin, Synergism and catalysis in flame retardancy of polymers. Polym. Adv. Technol. 12, 215–222 (2001)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, P. Wei, Y. Qian, J. Liu, The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos. B Eng. 60, 341–349 (2014)CrossRefGoogle Scholar
  15. 15.
    W. Wang, H. Pan, Y. Shi, Y. Pan, W. Yang, K. Liew, L. Song, Y. Hu, Fabrication of LDH nanosheets on β-FeOOH rods and applications for improving the fire safety of epoxy resin. Compos. A Appl. Sci. Manuf. 80, 259–269 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Kong, T. Wu, H. Zhang, Y. Zhang, M. Zhang, T. Si, L. Yang, J. Zhang, Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl. Clay Sci. 146, 230–237 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Xu, C. Zhang, H. Qu, C. Tian, Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly (vinyl chloride). J. Appl. Polym. Sci. 98, 1469–1475 (2005)CrossRefGoogle Scholar
  18. 18.
    W. Zhu, E.D. Weil, S. Mukhopadhyay, Intumescent flame-retardant system of phosphates and 5, 5, 5′, 5′, 5″, 5″-hexamethyltris (1, 3, 2-dioxaphosphorinanemethan) amine 2, 2′,2″-trioxide for polyolefins. J. Appl. Polym. Sci. 62, 2267–2280 (1996)CrossRefGoogle Scholar
  19. 19.
    F. Gholamian, G. Nabiyouni, D. Ghanbari, R. Jalajerdi, A. Aminifazl, Synergistic effect between Sb2O3 nanostructure and brominated compound on the flame retardant properties of the polymeric matrixes. High Temp. Mater. Processes (Lond.) 32, 125–132 (2013)Google Scholar
  20. 20.
    S. Qiu, W. Xing, X. Feng, B. Yu, X. Mu, R.K. Yuen, Y. Hu, Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem. Eng. J. 309, 802–814 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Shi, X. Qian, K. Zhou, Q. Tang, S. Jiang, B. Wang, B. Wang, B. Yu, Y. Hu, R.K. Yuen, CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene. Ind. Eng. Chem. Res. 52, 13654–13660 (2013)CrossRefGoogle Scholar
  22. 22.
    B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O’Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 6, 2095–2098 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    M.-J. Chen, Y.C. Lin, X.N. Wang, L. Zhong, Q.L. Li, Z.G. Liu, Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate. Ind. Eng. Chem. Res. 54, 12705–12713 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Xu, L. Liu, B. Zhang, Y. Hu, B. Xu, Effect of molybdenum trioxide-loaded graphene and cuprous oxide-loaded graphene on flame retardancy and smoke suppression of polyurethane elastomer. Ind. Eng. Chem. Res. 55, 4930–4941 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Wang, Y. Kan, X. Yu, J. Liu, L. Song, Y. Hu, In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: towards reducing fire hazards of unsaturated polyester resin. J. Hazard. Mater. 320, 504–512 (2016)PubMedCrossRefGoogle Scholar
  26. 26.
    M.J. Chen, X. Wang, X.L. Li, X.Y. Liu, L. Zhong, H.Z. Wang, Z.G. Liu, The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system. RSC Adv. 7, 35619–35628 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Wang, H. Pang, W. Chen, Y. Lin, L. Zong, G. Ning, Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors. ACS Appl. Mater. Interfaces 6, 7223–7235 (2014)PubMedCrossRefGoogle Scholar
  28. 28.
    D. McKee, Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance. Carbon 24, 737–741 (1986)CrossRefGoogle Scholar
  29. 29.
    F. Carpentier, S. Bourbigot, M. Le Bras, R. Delobel, Rheological investigations in fire retardancy: application to ethylene–vinyl-acetate copolymer–magnesium hydroxide/zinc borate formulations. Polym. Int. 49, 1216–1221 (2000)CrossRefGoogle Scholar
  30. 30.
    B. Guo, Y. Liu, Q. Zhang, F. Wang, Q. Wang, Y. Liu, J. Li, H. Yu, Efficient flame-retardant and smoke-suppression properties of Mg–Al-layered double-hydroxide nanostructures on wood substrate. ACS Appl. Mater. Interfaces 9, 23039–23047 (2017)PubMedCrossRefGoogle Scholar
  31. 31.
    Z.B. Shao, C. Deng, Y. Tan, M.J. Chen, L. Chen, Y.Z. Wang, Flame retardation of polypropylene via a novel intumescent flame retardant: ethylenediamine-modified ammonium polyphosphate. Polym. Degrad. Stab. 106, 88–96 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Wang, B. Yuan, X. Mu, X. Feng, Q. Tai, Y. Hu, Two-dimensional metal phenylphosphonates as novel flame retardants for polystyrene. Ind. Eng. Chem. Res. 56, 7192–7206 (2017)CrossRefGoogle Scholar
  33. 33.
    J.S. Wang, D.Y. Wang, Y. Liu, X.G. Ge, Y.Z. Wang, Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 108, 2644–2653 (2008)CrossRefGoogle Scholar
  34. 34.
    J.S. Wang, Y. Liu, H.B. Zhao, J. Liu, D.Y. Wang, Y.P. Song, Y.Z. Wang, Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stab. 94, 625–631 (2009)CrossRefGoogle Scholar
  35. 35.
    L. Liu, Y. Zhang, L. Li, Z. Wang, Microencapsulated ammonium polyphosphate with epoxy resin shell: preparation, characterization, and application in EP system. Polym. Adv. Technol. 22, 2403–2408 (2011)CrossRefGoogle Scholar
  36. 36.
    X. Jin, J. Sun, J.S. Zhang, X. Gu, S. Bourbigot, H. Li, W. Tang, S. Zhang, Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11. ACS Appl. Mater. Interfaces 9, 24964–24975 (2017)PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Tan, Z.B. Shao, L.X. Yu, Y.J. Xu, W.H. Rao, L. Chen, Y.Z. Wang, Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym. Degrad. Stab. 131, 62–70 (2016)CrossRefGoogle Scholar
  38. 38.
    B.W. Liu, H.B. Zhao, Y. Tan, L. Chen, Y.Z. Wang, Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance. Polym. Degrad. Stab. 122, 66–76 (2015)CrossRefGoogle Scholar
  39. 39.
    T. Tirri, M. Aubert, C.-E. Wilén, R. Pfaendner, H. Hoppe, Novel tetrapotassium azo diphosphonate (INAZO) as flame retardant for polyurethane adhesives. Polym. Degrad. Stab. 97, 375–382 (2012)CrossRefGoogle Scholar
  40. 40.
    R.C. Nicolas, C.E. Wilén, M. Roth, R. Pfaendner, R.E. King, Azoalkanes: a novel class of flame retardants. Macromol. Rapid Commun. 27, 976–981 (2006)CrossRefGoogle Scholar
  41. 41.
    N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRefGoogle Scholar
  42. 42.
    N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, S.S. Ray, J.C. Ngila, A novel approach to low-temperature synthesis of cubic HfO2 nanostructures and their cytotoxicity. Sci. Rep. 7, 9351 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    N. Kumar, S.S. Ray, J.C. Ngila, Ionic liquid-assisted synthesis of Ag/Ag2 Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance. New J. Chem. 41, 14618–14626 (2017)CrossRefGoogle Scholar
  44. 44.
    G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012)PubMedCrossRefGoogle Scholar
  45. 45.
    R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011)PubMedCrossRefGoogle Scholar
  46. 46.
    X. Yin, Y. Li, W. Wu, G. Chu, Y. Luo, H. Meng, Preparation of two-dimensional molybdenum disulfide nanosheets by high-gravity technology. Ind. Eng. Chem. Res. 56, 4736–4742 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Anto Jeffery, C. Nethravathi, M. Rajamathi, Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M=Mo, W). J. Phys. Chem. C 118, 1386–1396 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013)PubMedCrossRefGoogle Scholar
  49. 49.
    X. Zhou, S. Qiu, W. Xing, C.S.R. Gangireddy, Z. Gui, Y. Hu, Hierarchical Polyphosphazene@ Molybdenum disulfide hybrid structure for enhancing the flame retardancy and mechanical property of epoxy resins. ACS Appl. Mater. Interfaces 9, 29147–29156 (2017)PubMedCrossRefGoogle Scholar
  50. 50.
    K. Wenelska, E. Mijowska, Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New J. Chem. 41, 13287–13292 (2017)CrossRefGoogle Scholar
  51. 51.
    W. Cai, J. Zhan, X. Feng, B. Yuan, J. Liu, W. Hu, Y. Hu, Facile construction of flame-retardant-wrapped molybdenum disulfide nanosheets for properties enhancement of thermoplastic polyurethane. Ind. Eng. Chem. Res. 56, 7229–7238 (2017)CrossRefGoogle Scholar
  52. 52.
    K. Zhou, G. Tang, S. Jiang, Z. Gui, Y. Hu, Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. RSC Adv. 6, 37672–37680 (2016)CrossRefGoogle Scholar
  53. 53.
    X. Feng, B. Wang, X. Wang, P. Wen, W. Cai, Y. Hu, K.M. Liew, Molybdenum disulfide nanosheets as barrier enhancing nanofillers in thermal decomposition of polypropylene composites. Chem. Eng. J. 295, 278–287 (2016)CrossRefGoogle Scholar
  54. 54.
    B. Wang, H. Sheng, Y. Shi, L. Song, Y. Zhang, Y. Hu, W. Hu, The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites. J. Hazard. Mater. 314, 260–269 (2016)PubMedCrossRefGoogle Scholar
  55. 55.
    A. Clearfield, J. Stynes, The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J. Inorg. Nucl. Chem. 26, 117–129 (1964)CrossRefGoogle Scholar
  56. 56.
    L. Sun, W.J. Boo, H.J. Sue, A. Clearfield, Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 31, 39–43 (2007)CrossRefGoogle Scholar
  57. 57.
    Y. Zhang, X. Zeng, H. Li, X. Lai, Y. Guo, R. Zheng, Zirconium phosphate functionalized by hindered amine: a new strategy for effectively enhancing the flame retardancy of addition-cure liquid silicone rubber. Mater. Lett. 174, 230–233 (2016)CrossRefGoogle Scholar
  58. 58.
    X.Q. Liu, D.Y. Wang, X.L. Wang, L. Chen, Y.Z. Wang, Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly (lactic acid). Polym. Degrad. Stab. 98, 1731–1737 (2013)CrossRefGoogle Scholar
  59. 59.
    L. Xu, C. Lei, R. Xu, X. Zhang, F. Zhang, Hybridization of α-zirconium phosphate with hexachlorocyclotriphosphazene and its application in the flame retardant poly (vinyl alcohol) composites. Polym. Degrad. Stab. 133, 378–388 (2016)CrossRefGoogle Scholar
  60. 60.
    H. Lu, C.A. Wilkie, Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym. Degrad. Stab. 95, 2388–2395 (2010)CrossRefGoogle Scholar
  61. 61.
    Y. Pan, H. Pan, B. Yuan, N. Hong, J. Zhan, B. Wang, L. Song, Y. Hu, Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam. Mater. Chem. Phys. 163, 107–115 (2015)CrossRefGoogle Scholar
  62. 62.
    K. Liu, X. Wang, S. Ding, Y. Li, W. Hua, Y. Yue, Z. Gao, Enhanced activity over alkyl/aryl functionalized porous pillared-zirconium phosphates in liquid-phase reaction. J. Mol. Catal. A: Chem. 380, 84–89 (2013)CrossRefGoogle Scholar
  63. 63.
    R. Zhang, Y. Hu, B. Li, Z. Chen, W. Fan, Studies on the preparation and structure of polyacrylamide/α-zirconium phosphate nanocomposites. J. Mater. Sci. 42, 5641–5646 (2007)CrossRefGoogle Scholar
  64. 64.
    M. Kuruma, S.S. Ray, N. Kumar, Enhanced thermo-mechanical stiffness, thermal stability, and fire retardant performance of surface-modified 2D MoS2 nanosheet-reinforced polyurethane composites. Macromol. Mater. Eng. 304, 1800562 (2019)CrossRefGoogle Scholar
  65. 65.
    M. Kuruma, J. Bandyopadhyay, S.S. Ray, Thermal degradation characteristic and flame retardancy of polylactide-based nanobiocomposites. Molecules 23, 2648 (2018)CrossRefPubMedCentralGoogle Scholar
  66. 66.
    S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1541 (2003)CrossRefGoogle Scholar
  67. 67.
    S. Gaan, G. Sun, K. Hutches, M.H. Engelhard, Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus–nitrogen synergism. Polym. Degrad. Stab. 93, 99–108 (2008)CrossRefGoogle Scholar
  68. 68.
    H. Singh, A. Jain, T. Sharma, Effect of phosphorus-nitrogen additives on fire retardancy of rigid polyurethane foams. J. Appl. Polym. Sci. 109, 2718–2728 (2008)CrossRefGoogle Scholar
  69. 69.
    Q. Tai, R.K. Yuen, L. Song, Y. Hu, A novel polymeric flame retardant and exfoliated clay nanocomposites: preparation and properties. Chem. Eng. J. 183, 542–549 (2012)CrossRefGoogle Scholar
  70. 70.
    J. Zhu, P. Start, K.A. Mauritz, C.A. Wilkie, Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polym. Degrad. Stab. 77, 253–258 (2002)CrossRefGoogle Scholar
  71. 71.
    M. Si, V. Zaitsev, M. Goldman, A. Frenkel, D.G. Peiffer, E. Weil, J.C. Sokolov, M.H. Rafailovich, Self-extinguishing polymer/organoclay nanocomposites. Polym. Degrad. Stab. 92, 86–93 (2007)CrossRefGoogle Scholar
  72. 72.
    L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polym. Degrad. Stab. 87, 111–116 (2005)CrossRefGoogle Scholar
  73. 73.
    S. Ming, G. Chen, J. He, Y. Kuang, Y. Liu, R. Tao, H. Ning, P. Zhu, Y. Liu, Z. Fang, Highly transparent and self-extinguishing nanofibrillated cellulose-monolayer clay nanoplatelet hybrid films. Langmuir 33, 8455–8462 (2017)PubMedCrossRefGoogle Scholar
  74. 74.
    J. Herrera-Alonso, Polymer/Clay Nanocomposites used as Barrier Materials to Reduce Volatile Emissions. Ph.D. Thesis, Virginia Polytechnic Institute and State University (2009)Google Scholar
  75. 75.
    M. Kuruma, B.N. Rao, T. Jana, Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymer 99, 404–416 (2016)CrossRefGoogle Scholar
  76. 76.
    T. Kashiwagi, M. Mu, K. Winey, B. Cipriano, S. Raghavan, S. Pack, M. Rafailovich, Y. Yang, E. Grulke, J. Shields, Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49, 4358–4368 (2008)CrossRefGoogle Scholar
  77. 77.
    B. Schartel, M. Bartholmai, U. Knoll, Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym. Adv. Technol. 17, 772–777 (2006)CrossRefGoogle Scholar
  78. 78.
    K. Fang, J. Li, C. Ke, Q. Zhu, K. Tao, J. Zhu, Q. Yan, Intumescent flame retardation of melamine-modified montmorillonite on polyamide 6: enhancement of condense phase and flame retardance. Polym. Eng. Sci. 51, 377–385 (2011)CrossRefGoogle Scholar
  79. 79.
    X. Shan, P. Zhang, L. Song, Y. Hu, S. Lo, Compound of nickel phosphate with Ni (OH)(PO4) 2–layers and synergistic application with intumescent flame retardants in thermoplastic polyurethane elastomer. Ind. Eng. Chem. Res. 50, 7201–7209 (2011)CrossRefGoogle Scholar
  80. 80.
    H. Liu, Q. Zhong, Q. Kong, X. Zhang, Y. Li, J. Zhang, Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J. Therm. Anal. Calorim. 117, 693–699 (2014)CrossRefGoogle Scholar
  81. 81.
    L. Zuo, W. Fan, Y. Zhang, L. Zhang, W. Gao, Y. Huang, T. Liu, Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos. Sci. Technol. 139, 57–63 (2017)CrossRefGoogle Scholar
  82. 82.
    J.N. Gavgani, H. Adelnia, M.M. Gudarzi, Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J. Mater. Sci. 49, 243–254 (2014)CrossRefGoogle Scholar
  83. 83.
    X. Wang, L. Song, H. Yang, H. Lu, Y. Hu, Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly (butylene succinate) composites. Ind. Eng. Chem. Res. 50, 5376–5383 (2011)CrossRefGoogle Scholar
  84. 84.
    Y. Shi, L. Fu, X. Chen, J. Guo, F. Yang, J. Wang, Y. Zheng, Y. Hu, Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials 7, 259 (2017)PubMedCentralCrossRefGoogle Scholar
  85. 85.
    Y. Zhang, B. Wang, B. Yuan, Y. Yuan, K.M. Liew, L. Song, Y. Hu, Preparation of large-size reduced graphene oxide-wrapped ammonium polyphosphate and its enhancement of the mechanical and flame retardant properties of thermoplastic polyurethane. Ind. Eng. Chem. Res. 56, 7468–7477 (2017)CrossRefGoogle Scholar
  86. 86.
    M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRefGoogle Scholar
  87. 87.
    G. Huang, J. Gao, Y. Li, L. Han, X. Wang, Functionalizing nano-montmorillonites by modified with intumescent flame retardant: preparation and application in polyurethane. Polym. Degrad. Stab. 95, 245–253 (2010)CrossRefGoogle Scholar
  88. 88.
    D. Xiao, Z. Li, X. Zhao, U. Gohs, U. Wagenknecht, B. Voit, D.Y. Wang, Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene. Appl. Clay Sci. 143, 192–198 (2017)CrossRefGoogle Scholar
  89. 89.
    F. Sun, T. Yu, C. Hu, Y. Li, Influence of functionalized graphene by grafted phosphorus containing flame retardant on the flammability of carbon fiber/epoxy resin (CF/ER) composite. Compos. Sci. Technol. 136, 76–84 (2016)CrossRefGoogle Scholar
  90. 90.
    K. Zhou, J. Liu, Y. Shi, S. Jiang, D. Wang, Y. Hu, Z. Gui, MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Appl. Mater. Interfaces 7, 6070–6081 (2015)PubMedCrossRefGoogle Scholar
  91. 91.
    W. Xu, B. Zhang, X. Wang, G. Wang, D. Ding, The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J. Hazard. Mater. 343, 364–375 (2018)PubMedCrossRefGoogle Scholar
  92. 92.
    W. Cai, X. Feng, W. Hu, Y. Pan, Y. Hu, X. Gong, Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane: thermal stability, mechanical properties, and flame retardancy. Ind. Eng. Chem. Res. 55, 10681–10689 (2016)CrossRefGoogle Scholar
  93. 93.
    S.D. Jiang, Z.M. Bai, G. Tang, Y. Hu, L. Song, Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind. Eng. Chem. Res. 53, 6708–6717 (2014)CrossRefGoogle Scholar
  94. 94.
    X. Chen, Y. Hu, C. Jiao, L. Song, Preparation and thermal properties of a novel flame-retardant coating. Polym. Degrad. Stabil. 92, 1141–1150 (2007)CrossRefGoogle Scholar
  95. 95.
    Z. Zhang, L. Yuan, Q. Guan, G. Liang, A. Gu, Synergistically building flame retarding thermosetting composites with high toughness and thermal stability through unique phosphorus and silicone hybridized graphene oxide. Compos. A Appl. Sci. Manuf. 98, 174–183 (2017)CrossRefGoogle Scholar
  96. 96.
    K.Y. Lim, Y.W. Kim, I.H. Song, Porous sodium borate-bonded SiC ceramics. Ceram. Int. 39, 6827–6834 (2013)CrossRefGoogle Scholar
  97. 97.
    A. Cheng, F. Rodriguez, Mechanical properties of borate crosslinked poly (vinyl alcohol) gels. J. Appl. Polym. Sci. 26, 3895–3908 (1981)CrossRefGoogle Scholar
  98. 98.
    R. Houlsby, M. Ghajar, G. Chavez, Antimicrobial activity of borate-buffered solutions. Antimicrob. Agents Chemother. 29, 803–806 (1986)PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    J.E. Winandy, Effects of fire retardant retention, borate buffers, and redrying temperature after treatment on thermal-induced degradation. Forest Prod. J. 47, 79–86 (1997)Google Scholar
  100. 100.
    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)CrossRefGoogle Scholar
  101. 101.
    M.J. Nine, D.N.H. Tran, T.T. Tung, S. Kabiri, D. Losic, Graphene-borate as an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Appl. Mater. Interfaces 9, 10160–10168 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    A.M. Beaird, P. Li, H.S. Marsh, W. Al-Saidi, J.K. Johnson, M.A. Matthews, C.T. Williams, Thermal dehydration and vibrational spectra of hydrated sodium metaborates. Ind. Eng. Chem. Res. 50, 7746–7752 (2011)CrossRefGoogle Scholar
  103. 103.
    S. Wan, J. Peng, Y. Li, H. Hu, L. Jiang, Q. Cheng, Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan. ACS Nano 9, 9830–9836 (2015)PubMedCrossRefGoogle Scholar
  104. 104.
    M.J. Nine, D.N. Tran, A. ElMekawy, D. Losic, Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon 117, 252–262 (2017)CrossRefGoogle Scholar
  105. 105.
    Y. Tang, D.Y. Wang, X.K. Jing, X.G. Ge, B. Yang, Y.Z. Wang, A formaldehyde-free flame retardant wood particleboard system based on two-component polyurethane adhesive. J. Appl. Polym. Sci. 108, 1216–1222 (2008)CrossRefGoogle Scholar
  106. 106.
    G. Huang, S. Chen, S. Tang, J. Gao, A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)CrossRefGoogle Scholar
  107. 107.
    W. Guo, B. Yu, Y. Yuan, L. Song, Y. Hu, In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos. B Eng. 123, 154–164 (2017)CrossRefGoogle Scholar
  108. 108.
    Y. Jin, G. Huang, D. Han, P. Song, W. Tang, J. Bao, R. Li, Y. Liu, Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocomposites. Compos. A Appl. Sci. Manuf. 86, 9–18 (2016)CrossRefGoogle Scholar
  109. 109.
    X. Qian, B. Yu, C. Bao, L. Song, B. Wang, W. Xing, Y. Hu, R.K. Yuen, Silicon nanoparticle decorated graphene composites: preparation and their reinforcement on the fire safety and mechanical properties of polyurea. J. Mater. Chem. A 1, 827–836 (2013)Google Scholar
  110. 110.
    C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang, L. Qu, L. Dai, Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10, 1325–1332 (2016)PubMedCrossRefGoogle Scholar
  111. 111.
    S.H. Liao, P.L. Liu, M.C. Hsiao, C.C. Teng, C.A. Wang, M.D. Ger, C.L. Chiang, One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind. Eng. Chem. Res. 51, 4573–4581 (2012)CrossRefGoogle Scholar
  112. 112.
    Y. Lu, Y. Zhang, W. Xu, Flame retardancy and mechanical properties of ethylene-vinyl acetate rubber with expandable graphite/ammonium polyphosphate/dipentaerythritol system. J. Macromol. Sci. Part B 50, 1864–1872 (2011)CrossRefGoogle Scholar
  113. 113.
    K. Zhou, Z. Gui, Y. Hu, S. Jiang, G. Tang, The influence of cobalt oxide–graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos. A Appl. Sci. Manuf. 88, 10–18 (2016)CrossRefGoogle Scholar
  114. 114.
    W. Hu, B. Yu, S.D. Jiang, L. Song, Y. Hu, B. Wang, Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 300, 58–66 (2015)PubMedCrossRefGoogle Scholar
  115. 115.
    Y. Zhu, Y. Shi, Z.Q. Huang, L. Duan, Q. Tai, Y. Hu, Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos. A Appl. Sci. Manuf. 99, 149–156 (2017)CrossRefGoogle Scholar
  116. 116.
    Y. Shi, B. Yu, L. Duan, Z. Gui, B. Wang, Y. Hu, R.K. Yuen, Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 332, 87–96 (2017)PubMedCrossRefGoogle Scholar
  117. 117.
    W. Cai, X. Feng, B. Wang, W. Hu, B. Yuan, N. Hong, Y. Hu, A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chem. Eng. J. 316, 514–524 (2017)CrossRefGoogle Scholar
  118. 118.
    L. Xu, L. Xiao, P. Jia, K. Goossens, P. Liu, H. Li, C. Cheng, Y. Huang, C.W. Bielawski, J. Geng, Lightweight and ultrastrong polymer foams with unusually superior flame retardancy. ACS Appl. Mater. Interfaces 9, 26392–26399 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation CentreCouncil for Scientific and Industrial ResearchBrummeria, PretoriaSouth Africa
  2. 2.Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation CentreCouncil for Scientific and Industrial ResearchBrummeria, PretoriaSouth Africa

Personalised recommendations