Advertisement

Improving Segmentation of Liver Tumors Using Deep Learning

  • José Mejía
  • Alberto OchoaEmail author
  • Boris Mederos
Chapter
  • 43 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 862)

Abstract

Liver tumor segmentation from computed tomography images is an essential task for the automated diagnosis and treatment of liver cancer. However, such task is di cult due to the variability of morphologies, di use boundaries, heterogeneous densities, and sizes of the lesions. In this work we develop a new system designed for the segmentation of tumors from images acquired by computed tomography, the proposed system uses a network based on convolutional neural networks (CNN). The results are compared with a segmentation carried out by medical experts.

Keywords

Segmentation liver tumor Pattern recognition Deep learning 

References

  1. 1.
    Chartrand, G., Cresson, T., Chav, R., Gotra, A., Tang, A., De Guise, J.A.: Liver segmentation on ct and mr using laplacian mesh optimization. IEEE Trans. Biomed. Eng. 64(9), 2110–2121 (2017)CrossRefGoogle Scholar
  2. 2.
    Bonny, S., Chanu, Y.J., Singh, K.M.: Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter. SIViP 13(2), 299–305 (2019)CrossRefGoogle Scholar
  3. 3.
    Chen, E.L., Chung, P.C., Chen, C.L., Tsai, H.M., Chang, C.I.: An automatic di-agnostic system for ct liver image classification. IEEE Trans. Biomed. Eng. 45(6), 783–794 (1998)CrossRefGoogle Scholar
  4. 4.
    Diamant, I., Hoogi, A., Beaulieu, C.F., Safdari, M., Klang, E., Amitai, M., Greenspan, H., Rubin, D.L.: Improved patch-based automated liver lesion classification by separate analysis of the interior and boundary regions. IEEE J. Biomed. Health Inform. 20(6), 1585–1594 (2016)CrossRefGoogle Scholar
  5. 5.
    Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic ct-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12(5), 577–585 (2008)CrossRefGoogle Scholar
  6. 6.
    Yang, X., Yu, H.C., Choi, Y., Lee, W., Wang, B., Yang, J., Hwang, H., Kim, J.H., Song, J., Cho, B.H., et al.: A hybrid semiautomatic method for liver segmentation based on level-set methods using multiple seed points. Compu. Methods Programs Biomed. 113(1), 69–79 (2014)CrossRefGoogle Scholar
  7. 7.
    Bae, K.T., Giger, M.L., Chen, C.T., Kahn, C.E.: Automatic segmentation of liver structure in ct images. Med. Phys. 20(1), 71–78 (1993)CrossRefGoogle Scholar
  8. 8.
    Gao, L., Heath, D.G., Kuszyk, B.S., Fishman, E.K.: Automatic liver segmentation technique for three-dimensional visualization of ct data. Radiology 201(2), 359–364 (1996)CrossRefGoogle Scholar
  9. 9.
    Platero, C., Poncela, J.M., Gonzalez, P., Tobar, M.C., Sanguino, J., Asensio, G., Santos, E.: Liver segmentation for hepatic lesions detection and characterisation. In: Biomedical Imaging: From Nano to Macro. In: 5th IEEE International Symposium on ISBI 2008, pp. 13–16. IEEE (2008)Google Scholar
  10. 10.
    Hegde, R.B., Prasad, K., Hebbar, H., Singh, B.M.K.: Image processing approach for detection of leukocytes in peripheral blood smears. J. Med. Syst. 43(5), 114:1–114:11 (2019)CrossRefGoogle Scholar
  11. 11.
    Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., Koehl, C., Dourthe, O., Malassagne, B., Smith, M., Mutter, D., et al.: Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery. Comput. Aided Surg. 6(3), 131–142 (2001)CrossRefGoogle Scholar
  12. 12.
    Koss, J.E., Newman, F., Johnson, T., Kirch, D.: Abdominal organ segmentation using texture transforms and a Hopfield neural network. IEEE Trans. Med. Imaging 18(7), 640–648 (1999)CrossRefGoogle Scholar
  13. 13.
    Lee, C.C., Chung, P.C., Tsai, H.M.: Identifying multiple abdominal organs from cut image series using a multimodal contextual neural network and spatial fuzzy rules. IEEE Trans. Inform. Technol. Biomed. 7(3), 208–217 (2003)CrossRefGoogle Scholar
  14. 14.
    Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction. Med. Phys. 44(10) (2017)CrossRefGoogle Scholar
  15. 15.
    Jahangiri, A., Sepulveda, F.: The relative contribution of high-gamma linguistic processing stages of word production, and motor imagery of articulation in class separability of covert speech tasks in EEG data. J. Med. Syst. 43(2), 20:1–20:9 (2019)CrossRefGoogle Scholar
  16. 16.
    Hammon, R., Seuss, H., Hammon, M., Grillhösl, C., Heiss, R., Zeilinger, M., Bayerl, N., Vuylsteke, P., Wanninger, F., Schroth, M., Uder, M., Rompel, O.: Improved visualization of peripherally inserted central catheters on chest radiographs of neonates using fractional multiscale image processing. BMC Med. Imaging 19(1), 3:1–3:7 (2019)CrossRefGoogle Scholar
  17. 17.
    Pérez, M.A.B.: Desarrollo de algoritmos de procesamiento de imagen avanzado para interpretacion de imagenes médicas. Aplicacion a segmentacion de hígado sobre imagenes de resonancia magnetica multisecuencia. Ph.D. thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea (2016)Google Scholar
  18. 18.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar
  19. 19.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)
  20. 20.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Ca e: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  21. 21.
    Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Juarez City UniversityCiudad JuárezMexico

Personalised recommendations