Advertisement

Towards a Quantitative Identification of Mobile Social Media UIDPs’ Visual Features Using a Combination of Digital Image Processing and Machine Learning Techniques

  • Viviana Yarel Rosales-MoralesEmail author
  • Nicandro Cruz-Ramírez
  • Laura Nely Sánchez-Morales
  • Giner Alor-Hernández
  • Marcela Quiroz-Castellanos
  • Efrén Mezura-Montes
Chapter
  • 53 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 862)

Abstract

User Interface Design Patterns (UIDPs) improve the interaction between users and e-applications through the use of interfaces with a suitable and intuitive navigability without restrictions on the size of the screen to show the content. Nowadays, UIDPs are frequently used in the development of new mobile apps. In fact, mobile apps are ubiquitous: in education through learning platforms; in medicine through health self-care apps and in a social dimension, of course, through social networks. Social media networks have become one of the main channels of communication and dissemination of content; however, surprisingly, UIDPs have not been deeply analyzed in the design and development process of social media apps. In this sense, we propose the use of a combination of digital image processing and machine learning techniques to both quantitatively identify the main visual features of UIDPs in social media apps and assess the goodness of those features for building highly accurate classifiers. Our results suggest that such a combination seems sensible not only for explicitly unveiling patterns shared by different users but also for constructing such kind of classifiers.

Keywords

Mobile applications Social media apps User interface design patterns (UIDPs) Digital image processing Machine learning Decision trees 

Notes

Acknowledgements

This work was supported by Tecnológico Nacional de México (TecNM) and Artificial Intelligence Research Center of the Universidad Veracruzana, and sponsored by the National Council of Science and Technology (CONACyT) through the program “Estancias Posdoctorales 1er Año 2018-1” and the Mexican Secretariat of Public Education (in Spanish Secretaría de Educación Pública, SEP) through PRODEP (Programa para el Desarrollo Profesional Docente).

References

  1. 1.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59–68 (2010)CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Pressman, R.S.: Ingeniería del software. Un enfoque práctico (2010)Google Scholar
  5. 5.
    Toxboe, A.: UI patterns-user interface design pattern library. 15 July 2015, http://ui-patterns.com/patterns (2012)
  6. 6.
    Cortes-Camarillo, C.A., Alor-Hernández, G., Olivares-Zepahua, B.A., Rodríguez-Mazahua, L., Peláez-Camarena, S.G.: Análisis comparativo de patrones de diseño de interfaz de usuario para el desarrollo de aplicaciones educativas. Res. Comput. Sci. 126, 31–41 (2016)Google Scholar
  7. 7.
    Videla-Rodríguez, J.-J., Pérez, A.S., Costa, S.M., Seoane, A.: Diseño y usabilidad de interfaces para entornos educativos de realidad aumentada. Digit. Educ. Rev. 61–79 (2017)Google Scholar
  8. 8.
    Quispe Rodriguez, A.M.J.: Web usability for colorblind users. Bridge 8, 71–78 (2017)Google Scholar
  9. 9.
    Figeac, J., Chaulet, J.: Video-ethnography of social media apps’ connection cues in public settings. Mob. Media Commun. 6, 407–427 (2018)CrossRefGoogle Scholar
  10. 10.
    Sánchez-Morales, L.N., Alor-Hernández, G., Miranda-Luna, R., Rosales-Morales, V.Y., Cortes-Camarillo, C.A.: Generation of User Interfaces for Mobile Applications Using Neuronal Networks BT. In: García-Alcaraz, J.L., Alor-Hernández, G., Maldonado-Macías, A.A., Sánchez-Ramírez, C. (eds.) New Perspectives on Applied Industrial Tools and Techniques, pp. 211–231. Springer International Publishing, Cham (2018)Google Scholar
  11. 11.
    Cortes-Camarillo, C.A., Rosales-Morales, V.Y., Sanchez-Morales, L.N., Alor-Hernández, G., Rodríguez-Mazahua, L.: Atila: A UIDPs-based educational application generator for mobile devices. In: 2017 International Conference on Electronics, Communications and Computers, CONIELECOMP 2017 (2017)Google Scholar
  12. 12.
    Markkula, J., Mazhelis, O.: A generic architectural model approach for efficient utilization of patterns: application in the mobile domain. In: Application Development and Design: Concepts, Methodologies, Tools, and Applications. pp. 501–529. IGI Global (2018)Google Scholar
  13. 13.
    Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., Poshyvanyk, D.: Machine learning-based prototyping of graphical user interfaces for mobile apps. arXiv Prepr. arXiv1802.02312 (2018)Google Scholar
  14. 14.
    Umair, A., Nanda, P., He, X., Choo, K.-K.R.: User Relationship Classification of Facebook Messenger Mobile Data using WEKA BT. In International Conference on Network and System Security (2018)CrossRefGoogle Scholar
  15. 15.
    Basavaraju, P., Varde, A.S.: Supervised learning techniques in mobile device apps for Androids. SIGKDD Explor. Newsl. 18, 18–29 (2017)CrossRefGoogle Scholar
  16. 16.
    Waranusast, R., Intayod, P., Makhod, D.: Egg size classification on Android mobile devices using image processing and machine learning. In: 2016 Fifth ICT International Student Project Conference (ICT-ISPC), pp. 170–173 (2016)Google Scholar
  17. 17.
    Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S.: machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21, 110–124 (2016)CrossRefGoogle Scholar
  18. 18.
    Poostchi, M., Silamut, K., Maude, R.J., Jaeger, S., Thoma, G.: Image analysis and machine learning for detecting malaria. Transl. Res. 194, 36–55 (2018)CrossRefGoogle Scholar
  19. 19.
    NetMarketShare: Market Share Statistics for Internet Technologies. https://www.netmarketshare.com
  20. 20.
    Neil, T.: Mobile Design Pattern Gallery: UI Patterns for Smartphone Apps. O’Reilly Media, Inc. (2014)Google Scholar
  21. 21.
    Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly Media (2010)Google Scholar
  22. 22.
    Sheibley, M.: Mobile Patterns (2013)Google Scholar
  23. 23.
    UNITiD: Android Patterns, (2016)Google Scholar
  24. 24.
    LG ELECTRONICS: LG Developer. LG (2013)Google Scholar
  25. 25.
    Android TV: Android TV Patterns (2015)Google Scholar
  26. 26.
    Apple TV: Human Interface Guidelines (2016)Google Scholar
  27. 27.
    Dao, D.V.: Social media classification scheme in online teaching and learning activities: a consideration for educators. Int. J. Educ. Soc. Sci. 2, 85–94 (2015)Google Scholar
  28. 28.
    DelValle Institute for Emergency Preparedness Learning Center: SOCIAL MEDIA PLATFORMS. https://delvalle.bphc.org/mod/wiki/view.php?pageid=65
  29. 29.
    Rodríguez Cid, S.: Tendencias en Redes Sociales en 2018. https://www.cice.es/noticia/tendencias-redes-sociales-2018/
  30. 30.
    IAB Spain: Estudio anual de redes sociales 2018 (2018)Google Scholar
  31. 31.
    Breiman, L.: Classification and Regression Trees. Routledge (2017)Google Scholar
  32. 32.
    Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific (2014)Google Scholar
  33. 33.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  34. 34.
    Quinlan, J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann series in machine learning. Morgan Kaufmann Publishers (1993)Google Scholar
  35. 35.
    Mitchell, M.T.: Machine Learning. McGraw-Hill, Singapore (1997)zbMATHGoogle Scholar
  36. 36.
    Liu, Y., Zheng, Y.F.: One-against-all multi-class SVM classificationusing reliability measures. In: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN’05, vol. 2, pp. 849–854 (2005)Google Scholar
  37. 37.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14, 1137–1143 (1995)Google Scholar
  38. 38.
    Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Viviana Yarel Rosales-Morales
    • 1
    Email author
  • Nicandro Cruz-Ramírez
    • 1
  • Laura Nely Sánchez-Morales
    • 2
  • Giner Alor-Hernández
    • 2
  • Marcela Quiroz-Castellanos
    • 1
  • Efrén Mezura-Montes
    • 1
  1. 1.Centro de Investigación en Inteligencia ArtificialUniversidad VeracruzanaXalapa, VeracruzMexico
  2. 2.Division of Research and Postgraduate StudiesTecnológico Nacional de México/I. T. OrizabaOrizaba, VeracruzMexico

Personalised recommendations