Care and Management of a Neonate Born to an HIV Positive Mother

  • Radhika SinghEmail author


Prevention of mother to child transmission (PMTCT) of Human Immunodeficiency virus (HIV) during pregnancy is one of the great successes over the last two decades. Various regimens have been tried, eventually leading to the achievement of very low rates of PMTCT of HIV. The ultimate aim is to eliminate the mother to child transmission (EMTCT) of HIV. EMTCT includes the period from preconception to 18 months of age or 6 weeks post-cessation of breastfeeding if continued beyond18 months. The number of HIV exposed uninfected (HEU) infants exposed to HIV and antiretrovirals is utero and during breastfeeding is increasing. The care of the newborn of an HIV positive mother should not end at birth. A continuum of care extending postpartum and postnatally is required to identify and prevent infections. Neonates born to HIV positive mothers are exposed in-utero to antiretroviral drugs, antibiotics, anti-tuberculous therapy etc. which may lead to altered fetal programming. Antiretroviral drugs have the potential of causing adverse effects in the newborn. One needs to have a high index of suspicion when examining an HIV exposed neonate. Investigations must be done timeously to prevent further complications and long-term follow up is required for some of the neonates.


HIV Neonate Early onset sepsis Late onset sepsis Congenital infections Breast feeding Transmission Prevention Complications Tuberculosis Birth defects Immune defects PCR PMTCT ART 


  1. 1.
    UNAIDS. WHO global AIDS update. Ending AIDS towards the 90–90-90 targets. UNAIDS: Geneva; 2017.Google Scholar
  2. 2.
    The Working Group on Mother-To-Child Transmission of HIV. Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8(5):506–10.CrossRefGoogle Scholar
  3. 3.
    Tess BH, Rodrigues LC, Newell ML, Dunn DT, Lago TDG. Breastfeeding, genetic, obstetric and other risk factors associated with mother-to-child transmission of HIV-1 in São Paulo state. Brazil. AIDS. 1998;12:513–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Baggaley R, Doherty M, Ball A, Ford N, Gottfried HG. Department of HIV/ AIDS, World Health Organization, Geneva, Switzerland. The strategic use of Antiretrovirals to prevent HIV infection: a converging agenda. Clin Infect Dis. 2015;60(Suppl 3):159–60.CrossRefGoogle Scholar
  5. 5.
    French CE, Thorne C, Byrne L, Cortina-Borja M, Tookey PA. Presentation for care and antenatal management of HIV in the UK, 2009-2014. HIV Med. 2017;18(Suppl 3):161–704.PubMedCrossRefGoogle Scholar
  6. 6.
    Kourtis AP, Bullerys M, Nesheim S, et al. Understanding the timing of transmission from mother to child. JAMA. 2001;285(6):709–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Connor EM, Sperling RS, Gilber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS clinical trial group protocol 076 study group. NEJM. 1994;331:1173–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Copper ER, Charurat M, Mofenson L, Women and infants Transmission Study Group, et al. Combination antiretroviral strategies for the treatment of pregnant HIV-1 infected women and prevention of perinatal HIV-1 transmission. J Acquir Immune Defic Syndr. 2002;29:484–94.CrossRefGoogle Scholar
  9. 9.
    Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1 infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. Rockville: AIDSinfo; 2010. p. 1–17.Google Scholar
  10. 10.
    Fawzi W, Msamanga G, Renjifo B, et al. Predictors of intrauterine and intrapartum transmission of HIV-1 among Tanzanian women. AIDS. 2001;15:1157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Neveu D, Viljoen J, Bland RM, et al. Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis. 2011;52:819–25.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rousseau CM, Nduati RW, Richardson BA, et al. Longitudinal analysis of human immunodeficiency virus type 1 RNA in breast milk and of its relationship to infant infection and maternal disease. J Infect Dis. 2003;187:741–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gaur A, Dorminguez KL, Kalish ML, et al. Practice of feeding premasticated food to infants: a potential risk factor for HIV transmission. Pediatrics. 2009;124:658–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Lehman DA, Farquhar C. Biological mechanisms of vertical human immunodeficiency virus (HIV-1) transmission. Rev Med Virol. 2007;17:381–403.PubMedCrossRefGoogle Scholar
  15. 15.
    Kourtis AP, Lee FK, Abrams EJ, Jamieson DJ, Bulterys M. Mother-to-child transmission of HIV-1: timing and implications for prevention. Lancet Infect Dis. 2006;6:726–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen JY, Ribaudo HJ, Souda S, et al. Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis. 2012;206:1695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Short CE, Douglas M, Smith JH, Taylor GP. Preterm delivery risk in women initiating antiretroviral therapy to prevent HIV mother-to-child transmission. HIV Med. 2014;15:233–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Thorne C, Patel D, Newell ML. Increased risk of adverse pregnancy outcomes in HIV-infected women treated with highly active antiretroviral therapy in Europe. AIDS. 2004;18:2337–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Townsend CL, Cortina-Borja M, Peckham CS, Tookey PA. Antiretroviral therapy and premature delivery in diagnosed HIVinfected women in the United Kingdom and Ireland. AIDS. 2007;21:1019–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Ekouevi DK, Coffie P, Becquet R, et al. Antiretroviral therapy in pregnant women with advanced HIV disease and pregnancy outcomes in Abidjan, Cote d’Ivoire. AIDS. 2008;22:1815–20.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li N, Sando MM, Spiegelman D, et al. Antiretroviral therapy in relation to birth ART among HIV-infected women: a cohort study. J Infect Dis. 2016;213:1057–64.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tuomala RE, Shapiro DE, Mofenson LM, et al. Antiretroviral therapy during pregnancy and the risk of an adverse outcome. N Engl J Med. 2002;364:1863–70.CrossRefGoogle Scholar
  23. 23.
    Zash R, Souda S, Chen JY, et al. Reassuring birth outcomes with tenofovir/ emtricitabine/ efavirenz used for prevention of mother to child transmission of HIV in Botswana. J Acquir Immune Defic Syndr. 2016;71:428–36.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Malaba TR, Phillips T, Le Roux S, Brittain K, Zerbe A, Petro G, Ronan A, McIntyre JA, Abramsand EJ, Myer L. Antiretroviral therapy use during pregnancy and adverse birth outcomes in South African women. Int J Epidemiol. 2017;46:1678–89.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    CHEN JY, Boer K, Nellen JF, Patel D, et al. The AmRo study: pregnancy outcome in HIV-1-infected women under effective highly active antiretroviral therapy and a policy of vaginal delivery. BJOG. 2007;114:148–55.CrossRefGoogle Scholar
  26. 26.
    Olagbuji BN, Ezeanochie MC, Ande AB, Oboro VO. Obstetric and perinatal outcome in HIV positive women receiving HAART in urban Nigeria. Arch Gynecol Obstet. 2010;281:991–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    le Roux SM, Jao J, Brittain K, Philips TK, Olatunbosun S, Ronan A, et al. Tenofovir exposure in utero and linear growth in HIV exposed, uninfected infants. AIDS. 2017;31:97–103.PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Obumneme-Anyim I, Ibeziako N, Emodi I, Ikefuna A, Oguonu T. Hematological indices at birth of infants of HIV-positive mothers participating in a prevention of mother-to-child transmission program. J Trop Pediatr. 2016;62(Suppl 1):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jauniaux E, Nessmann C, Imbert MC, et al. Morphological aspects of the placenta in HIV pregnancies. Placenta. 1988;9:633–42.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Vermaak A, Theron GB, Schubert PT, et al. Morphologic changes in the placentas of HIV-positive women and their association with degree of immune suppression. Int J Gynaecol Obstet. 2012;119:239–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz DA, Sungkarat S, Shaffer N, et al. Placental abnormalities associated with human immunodeficiency virus type 1 infection and perinatal transmission in Bangkok, Thailand. J Infect Dis. 2000;182:1652–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Brinkman K, Smeitink JA, Romijn JA, et al. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet. 1999;354:1112–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Noguera A, Fortuny C, Muñoz-Almagro C, et al. Hyperlactatemia in human immunodeficiency virus-uninfected infants who are exposed to Antiretrovirals. Pediatrics. 2004;114:e598–603.PubMedCrossRefGoogle Scholar
  34. 34.
    Blanche S, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet. 1999;354:1084–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Barret B, Tardieu M, Rustin P, French Perinatal Cohort Study Group, et al. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants: clinical screening in a large prospective cohort. AIDS. 2003;17:1769–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Jao J, Abrams EJ. Metabolic complications of in utero maternal HIV and antiretroviral exposure in HIV-exposed infants. Pediatr Infect Dis J. 2014;33(7):734–40.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Phiri K, Hernandez-Diaz S, Dugan KB, Williams PL, Dudley JA, Jules A, et al. First trimester exposure to antiretroviral therapy and risk of birth defect. Pediatr Infect Dis J. 2014;33(7):741–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Prieto LM, González-Tomé MI, Muñoz E, et al. Birth defects in a cohort of infants born to HIV-infected women in Spain, 2000-2009. BMC Infect Dis. 2014;14:700.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sibiude J, Mandelbrot L, Blanche S, et al. Association between prenatal exposure to antiretroviral therapy and birth defects: an analysis of the French perinatal cohort study (ANRS CO1/CO11). PLoS Med. 2014;11(4):e100163.CrossRefGoogle Scholar
  40. 40.
    Centers for Disease Control and Prevention. Update on overall prevalence of major birth defects-Atlanta, Georgia, 1978-2005. Morb Mortal Wkly Rep. 2008;57(1):1–5.Google Scholar
  41. 41.
    Watts D, Li D, Handelsman E, et al. Assessment of birth defects according to maternal therapy among infants in the women and infants transmission study. J Acquir Immune Defic Syndr. 2007;44(3):299–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Brogly SB, Abzug MJ, Watts DH, et al. Birth defects among children born to HIV-infected women: pediatric AIDS clinical trials protocols 219 and 219C. Pediatr Infect Dis J. 2010;29(8):721–7. Scholar
  43. 43.
    Adachi K, Xu J, Yeganeh N, Camarca M, Morgado MG, Watts H, Mofenson LM, et al. Combined evaluation of sexually transmitted infections in HIV-infected pregnant women and infant HIV transmission for the NICHD HPTN 040 Study Team. PLoS One. 2018;13(1):e0189851. Scholar
  44. 44.
    World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. Geneva: World Health Organization; 2012.Google Scholar
  45. 45.
    McClelland RS, Wang CC, Mandaliya K, Overbaugh J, Reiner MT, Panteleeff DD, et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS. 2001;15(1):105±10.CrossRefGoogle Scholar
  46. 46.
    Wabwire-Mangen F, Gray RH, Mmiro FA, Ndugwa C, Abramowsky C, Wabinga H, et al. Placental membrane inflammation and risks of maternal-to-child transmission of HIV-1 in Uganda. J Acquir Immune Defic Syndr. 1999;22(4):379±85.CrossRefGoogle Scholar
  47. 47.
    Rotchford K, Strum AW, Wilkinson D. Effect of coinfection with STDs and of STD treatment on HIV shedding in genital-tract secretions: systematic review and data synthesis. Sex Transm Dis. 2000;27(5):243±8.CrossRefGoogle Scholar
  48. 48.
    Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sex Transm Dis. 2008;35(11):946±59. Scholar
  49. 49.
    Chen KT, Segu M, Lumey LH, Kuhn L, Carter RJ, Bulterys M, et al. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus. Obstetr Gynaecol. 2005;106(6):1341±8. Scholar
  50. 50.
    Drake AL, John-Stewart GC, Wald A, Mbori-Ngacha DA, Bosire R, Wamalwa DC, et al. Herpes simplex virus type 2 and risk of intrapartum human immunodeficiency virus transmission. Obstetr Gynecol. 2007;109(2 Pt 1):403±9. Scholar
  51. 51.
    Lurain NS, Robert ES, Xu J, Camarca M, Landay A, Kovacs AA, et al. HIV type 1 and cytomegalovirus coinfection in the female genital tract. J Infect Dis. 2004;190(3):619±23. Scholar
  52. 52.
    Adachi K, Xu J, Ank B, Watts DH, Mofenson LM, Pilotto JH, et al. Cytomegalovirus urinary shedding in HIV-infected pregnant women and congenital cytomegalovirus infection. Clin Infect Dis. 2017;65:405–13. Scholar
  53. 53.
    Kovacs A, Schluchter M, Easley K, et al. Pediatric pulmonary and cardiovascular complications of vertically transmitted HIV infection study group. Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. N Engl J Med. 1999;341:77–84.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Day JH, Grant AD, Fielding KL, et al. Does tuberculosis increase HIV load? J Infect Dis. 2004;190:1677–84.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Goletti D, Weissman D, Jackson RW, et al. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol. 1996;157:1271–8.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang Y, Nakata K, Weiden M, Rom WN. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest. 1995;95:2324–31.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Toossi Z, Mayanja-Kizza H, Hirsch CS, et al. Impact of tuberculosis (TB) on HIV-1 activity in dually infected patients. Clin Exp Immunol. 2001;123:233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pillay T, Adhikari M, Coovadia HM, Moodley J, Khan M, Sullivan JL. In utero HIV infection in pregnancies complicated by tuberculosis in Durban, South Africa. Arch Dis Child Fetal Neonatal Ed. 2004;89:F468–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gupta A, Bhosale R, Kinikar A, et al. Maternal tuberculosis: a risk factor for mother-to-child transmission of human immunodeficiency virus. J Infect Dis. 2011;203:358–62.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tess BH, Rodrigues LC, Newell ML, Dunn DT, Lago TD. Infant feeding and risk of mother-to-child transmission of HIV-1 in Sao Paulo State, Brazil. Sao Paulo Collaborative Study for Vertical Transmission of HIV-1. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;19:189–94.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Embree JE, Njenga S, Datta P, et al. Risk factors for postnatal mother-child transmission of HIV-1. AIDS. 2000;14:2535–41.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lunney Kevin M, Iliff P, Mutasa K, et al. Associations between breast milk viral load, mastitis, exclusive breast-feeding, and postnatal transmission of HIV. Clin Infect Dis. 2010;50:762–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Slogrove AL, Goetghebuer T, Cotton MF, Singer J, Bettinger JA. Pattern of infectious morbidity in HIV exposed uninfected infants and children. Front Immunol. 2016;7:164. Scholar
  64. 64.
    Dangor Z, Lala SG, Cutland CL, Koen A, Jose L, Nakwa F, et al. Burden of invasive Group B Streptococcus disease and early neurological sequelae in south African infants. PLoS One. 2015;10(4):e0123014. Scholar
  65. 65.
    Taron-Brocard C, Le Chenadec J, Faye A, Dollfus C, Goetghebuer T, Gajdos V, et al. Increased risk of serious bacterial infections due to maternal immuno-suppression in HIV-exposed uninfected infants in a European country. Clin Infect Dis. 2014;59(9):1332–45. Scholar
  66. 66.
    Epalza C, Goetghebuer T, Hainaut M, Prayez F, Barlow P, Dediste A, et al. High incidence of invasive Group B streptococcal infections in HIV-exposed uninfected infants. Pediatrics. 2010;126(3):e631–8. Scholar
  67. 67.
    Cutland CL, Schrag SJ, Thigpen MC, Velaphi SC, Wadula J, Adrian PV, et al. Increased risk for Group B Streptococcus sepsis in young infants exposed to HIV, Soweto, South Africa, 2004–2008. Emerg Infect Dis. 2015;21(4):638. Scholar
  68. 68.
    Dauby N, Chamekh M, Melin P, Slogrove AL, Goetghebuer T. Increased risk of Group B Streptococcus invasive infection in HIV-exposed but uninfected infants: a review of the evidence and possible mechanisms. Front Immunol. 2016;7:505. Scholar
  69. 69.
    World Health Organization. Hepatitis B factsheet. Geneva: WHO; 2017.Google Scholar
  70. 70.
    Andersson MI, Maponga TG, Ijaz S, Theron G, Preiser W, Tedder RS. High HBV viral loads in HIV-infected pregnant women at a tertiary hospital, South Africa. J Acquir Immune Defic Syndr. 2012;60(4):e111–2.PubMedCrossRefGoogle Scholar
  71. 71.
    Tovo PA, Palomba E, Ferraris G, Principi N, Ruga E, Dallacasa P, et al. Increased risk of maternal-infant hepatitis C virus transmission for women coinfected with human immunodeficiency virus type 1. Italian Study Group for HCV Infection in Children. Clin Infect Dis. 1997;25(5):1121–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Beasley RP, Trepo C, Stevens CE, Szmuness W. The e antigen and vertical transmission of hepatitis B surface antigen. Am J Epidemiol. 1977;105:94–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Andersson MI, Rajbhandari R, Kew MC, Vento S, Preiser W, Hoepelman AIM, et al. Mother-to-child transmission of hepatitis B virus in sub-Saharan Africa: time to act. Lancet Glob Health. 2015;3:e358–e35.PubMedCrossRefGoogle Scholar
  74. 74.
    Society for Maternal-Fetal Medicine (SMFM), Dionne-Odom J, Tita AT, Silverman NS. Hepatitis B in pregnancy screening, treatment, and prevention of vertical transmission. Am J Obstet Gynecol. 2016;214(1):6–14. Scholar
  75. 75.
    Koyanagi A, Humphrey JH, Ntozini R, et al. Morbidity among human immunodeficiency virus-exposed but uninfected, human immunodeficiency virus infected, and human immunodeficiency virus-unexposed infants in Zimbabwe before availability of highly active antiretroviral therapy. Pediatr Infect Dis J. 2011;30:45–51.PubMedCrossRefGoogle Scholar
  76. 76.
    de Moraes-Pinto MI, Verhoeff F, Chimsuku L, et al. Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch Dis Child Fetal Neonatal Ed. 1998;79:F202–F5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    de Moraes Pinto MI, Almeida ACM, Kenj G, et al. Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J Infect Dis. 1996;173:1077–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Cumberland P, Shulman CE, Maple PA, et al. Maternal HIV infection and placental malaria reduce transplacental antibody transfer and tetanus antibody levels in newborns in Kenya. J Infect Dis. 2007;196:550–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Afran L, Garcia Knight M, Nduati E, et al. HIV-exposed uninfected children: a growing population with a vulnerable immune system? Clin Exp Immunol. 2014;176:11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Dauby N, Goetghebuer T, Kollmann TR, et al. Uninfected but not unaffected chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis. 2012;12:330–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Paediatrics and Child HealthNelson R Mandela School of Medicine, UKZNDurbanSouth Africa

Personalised recommendations