Advertisement

Performance of Sequential Tests for Random Data Monitoring Under Distortion

  • Alexey KharinEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1055)

Abstract

Performance characteristics (error probabilities and expected sample sizes) of the sequential statistical tests are studied. Three models of data are considered in details. The results give a possibility to analyze robustness of the sequential algorithms of random data flow monitoring under contamination.

Keywords

Sequential test Error probability Expected number of observations Performance characteristics Markov chain Distortion 

References

  1. 1.
    Wald, A.: Sequential Analysis. Wiley, New York (1947)zbMATHGoogle Scholar
  2. 2.
    Mukhopadhyay, N., Datta, S., Chattopadhyay, S.: Applied sequential Methodologies. Marcel Dekker, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Ghosh, B., Sen, P.K.: Handbook of Sequential Analysis. Marcel Dekker, New York (1991)zbMATHGoogle Scholar
  4. 4.
    Lai, T.: Sequential analysis: Some classical problems and new challenges. Statistica Sinica 11, 303–408 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Huber, P., Ronchetti, E.: Robust Statistics. Wiley, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Kharin, Yu.: Robustness in Statistical Forecasting. Springer, New York (2013)CrossRefGoogle Scholar
  7. 7.
    Kharin, A.: Robust Bayesian prediction under distortions of prior and conditional distributions. J. Math. Sci. 126(1), 992–997 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kharin, A., Shlyk, P.: Robust multivariate Bayesian forecasting under functional distortions in the chi-square metric. J. Statist. Planning Infer. 139, 3842–3846 (2009)CrossRefGoogle Scholar
  9. 9.
    Kharin, A.Yu.: Robustness of sequential testing of hypotheses on parameters of M-valued random sequences. J. Math. Sci. 189(6), 924–931 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1960)zbMATHGoogle Scholar
  11. 11.
    Kharin, A.Y.: An approach to performance analysis of the sequential probability ratio test for the simple hypotheses testing. Proc. Belarus. State Univ. - Ser. Phys.-Math. Sci. 1, 92–96 (2002)zbMATHGoogle Scholar
  12. 12.
    Kharin, A.Yu.: Robustness of Bayesian and sequential statistical decision rules. BSU, Minsk (2013)Google Scholar
  13. 13.
    Kharin, A.Y.: Performance and robustness evaluation in sequential hypotheses testing. Commun. Stat. – Theory Methods 45(6), 1663–1709 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kharin, A.Y.: An approach to asymptotic robustness analysis of sequential tests for composite parametric hypotheses. J. Math. Sci. 227(2), 196–203 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kharin, A., Tu, T.T.: Performance and robustness analysis of sequential hypotheses testing for time series with trend. Austrian J. Stat. 46(3&4), 23–36 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations