Advertisement

Fuzzy Morphological Filters for Processing of Printed Circuit Board Images

  • Alexander InyutinEmail author
  • Alexander Doudkin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1055)

Abstract

The paper describes evaluation of effectiveness of morphological filters for removal of noise on images of layers of printed circuit boards by criteria of the minimum noise and computing complexity of filters and the minimum layout distortions. For assessment, the filters are applied with different parameters to a set of images on which a search and classification of defects of layout are carried out further.

Keywords

Mathematical morphology Noise reduction Printed circuit board PCB Layout Image 

Notes

Acknowledgement

The work was partially supported by Belarusian Republican Foundation for Fundamental Research (project No. Ф19MC-032).

References

  1. 1.
    Vardavoulia, M.I., et al.: Binary, gray-scale and vector soft mathematical morphology: extensions, algorithms, and implementations. Adv. Imaging Electron Phys. 119, 1–53 (2001)CrossRefGoogle Scholar
  2. 2.
    Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160(13), 1858–1867 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bloch, I.: Fuzzy and pattern morphology. Pattern Recognit. Lett. 14(6), 483–488 (1993)CrossRefGoogle Scholar
  4. 4.
    Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: A comparative. Pattern Recognit. 28(9), 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bloch, I.: Lattices of the fuzzy sets and bipolar fuzzy sets, and the morphology. Inf. Sci. 181(10), 2002–2015 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bloch, I.: Spatial reasoning under imprecision using the theory of morphology. Int. J. Approx. Reason. 41(2), 77–95 (2006)CrossRefGoogle Scholar
  7. 7.
    Fatichah, C., et al.: Interest-based ordering for chickening Fatichah. J. Adv. Comput. Intell. Intell. Inform. 16(1), 76–86 (2012)CrossRefGoogle Scholar
  8. 8.
    Gasteratos, A., Andreadis, I.: Non-linear image processing in hardware. Pattern Recognit. 33(6), 1013–1021 (2000)CrossRefGoogle Scholar
  9. 9.
    Gasteratos, A., Andreadis, I.: Soft mathematical morphology: extensions, algorithms and implementations invited contributions. Adv. Imaging Electron Phys. 110, 63–99 (1999)CrossRefGoogle Scholar
  10. 10.
    Giardina, C.R., Dougherty, E.R.: Morphological Method in Image and Signal Processing. Prentice Hall, New Jersey (1988)Google Scholar
  11. 11.
    Koskinen, L., et al.: Soft morphological filters. In: Proceeings of the SPIE Image Algebra and Morphological Image Processing II, vol. 1568, pp. 262–270 (1991)Google Scholar
  12. 12.
    Kuosmanen, P., Astola, J.: Soft morphological filtering. J. Math. Imaging Vis. 5(3), 231–262 (1995)CrossRefGoogle Scholar
  13. 13.
    Liu, T., Li, X.: Infrared small targets detection and tracking based on soft morphology Top-Hat and SPRT-PMHT. In: Proceedings of the IEEE Congress on Image Processing and Signal Processing (CISP), Shanghai, vol. 2, pp. 968–972 (2010)Google Scholar
  14. 14.
    Maccarone, M.C.: Fuzzy mathematical morphology: concepts and applications. Vistas Astron. 40(4), 469–477 (1996)CrossRefGoogle Scholar
  15. 15.
    Nachtegael, M., et al.: A study of interval-valued fuzzy morphology based on the minimum-operator. In: Proceedings of SPIE 7546 - Proceedings of Second International Conference on Digital Image Processing, 26 February 2010, Singapore SPIE, vol. 7546, pp. 75463H-1–75463H-7 (2010)Google Scholar
  16. 16.
    Kerre, E.E., Nachtegael, M.: Classical and fuzzy approaches to morphology fuzzy techniques in image processing. In: Kerre, E.E., Nachtegael, M. (eds.) fuzzy techniques in image processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-7908-1847-5_1CrossRefzbMATHGoogle Scholar
  17. 17.
    Kerre, E.E., Nachtegael, M.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pu, C.C., Shih, F.Y.: Threshold decomposition of gray-scale soft morphology into binary soft morphology. CVGIP – Graph. Models Image Process. 57(6), 522–526 (1995)CrossRefGoogle Scholar
  19. 19.
    Serra, J.: Image analysis and Mathematical Morphology, 610 p. Academic Press (1982)Google Scholar
  20. 20.
    Shih, F.Y., Pu, C.C.: Analysis of the properties of soft morphological filtering using the threshold decomposition. IEEE Trans. Signal Process. 43(2), 539–544 (1995)CrossRefGoogle Scholar
  21. 21.
    Sinha, D., Dougherty, E.R.: Fuzzy mathematical morphology. J. Vis. Commun. Image Represent. 3(3), 286–302 (1992)CrossRefGoogle Scholar
  22. 22.
    Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tickle, A.J., et al.: Upgrading to a soft multifunctional image processor. In: Proceedings of SPIE Optical Design and Engineering III. SPIE, vol. 7100, pp. 71002H-1–71002H-12 (2008)Google Scholar
  24. 24.
    Tian, Y., Zhao, C.: Optimization of the soft morphological filters with parallel annealing-genetic strategy. In: Proceedings of the International Conference on Pervasive Computing Signal Processing and Applications (PCSPA), Harbin, China, 17–19 September 2010, pp. 576–581 (2010)Google Scholar
  25. 25.
    Wu, M.: Fuzzy morphology and image analysis. In: Proceedings of the 9th ICPR, Rome, 14–17 November 1988, pp. 453–455 (1988)Google Scholar
  26. 26.
    Yan, X., Wang, Y.: Edge detection for feather and down image via BEMD and soft morphology. In: Proceedings of International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 24–26 December 2011, vol. 3, pp. 1603–1607 (2011)Google Scholar
  27. 27.
    Yang, X.: Fuzzy morphology based feature identification fuzzy information and engineering. In: Cao, B., Wang, G., Guo, S., Chen, S. (eds.) Fuzzy Information and Engineering 2010. Advances in Intelligent and Soft Computing, vol. 78, pp. 607–615. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14880-4_67CrossRefGoogle Scholar
  28. 28.
    Gonzalez, R., Woods, R.: The World of Digital Processing. Digital image processing Technosphere, p. 660 (2005)Google Scholar
  29. 29.
    Song, J., Delp, E.J.: A study of the generalized morphological filter. Circuits Syst. Signal Process. 11(1), 229–252 (1992)CrossRefGoogle Scholar
  30. 30.
    Materon, G.: Random sets and integral geometry, Mir., 318 (1978)Google Scholar
  31. 31.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  32. 32.
    De Baets, B., Kerre, E.E., Gupta, M.M.: The fundamentals of fuzzy mathematical morphology: part 1. Int. J. Gen Syst 23, 155–171 (1995)CrossRefGoogle Scholar
  33. 33.
    Kitainik, L.: Fuzzy Decision Procedures with Binary Relations, p. 255. Kluwer Academic Publishers, Boston (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.United Institute of Informatics ProblemsMinskBelarus

Personalised recommendations