Fuzzy Morphological Filters for Processing of Printed Circuit Board Images
Conference paper
First Online:
Abstract
The paper describes evaluation of effectiveness of morphological filters for removal of noise on images of layers of printed circuit boards by criteria of the minimum noise and computing complexity of filters and the minimum layout distortions. For assessment, the filters are applied with different parameters to a set of images on which a search and classification of defects of layout are carried out further.
Keywords
Mathematical morphology Noise reduction Printed circuit board PCB Layout ImageNotes
Acknowledgement
The work was partially supported by Belarusian Republican Foundation for Fundamental Research (project No. Ф19MC-032).
References
- 1.Vardavoulia, M.I., et al.: Binary, gray-scale and vector soft mathematical morphology: extensions, algorithms, and implementations. Adv. Imaging Electron Phys. 119, 1–53 (2001)CrossRefGoogle Scholar
- 2.Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160(13), 1858–1867 (2009)MathSciNetCrossRefGoogle Scholar
- 3.Bloch, I.: Fuzzy and pattern morphology. Pattern Recognit. Lett. 14(6), 483–488 (1993)CrossRefGoogle Scholar
- 4.Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: A comparative. Pattern Recognit. 28(9), 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
- 5.Bloch, I.: Lattices of the fuzzy sets and bipolar fuzzy sets, and the morphology. Inf. Sci. 181(10), 2002–2015 (2011)MathSciNetCrossRefGoogle Scholar
- 6.Bloch, I.: Spatial reasoning under imprecision using the theory of morphology. Int. J. Approx. Reason. 41(2), 77–95 (2006)CrossRefGoogle Scholar
- 7.Fatichah, C., et al.: Interest-based ordering for chickening Fatichah. J. Adv. Comput. Intell. Intell. Inform. 16(1), 76–86 (2012)CrossRefGoogle Scholar
- 8.Gasteratos, A., Andreadis, I.: Non-linear image processing in hardware. Pattern Recognit. 33(6), 1013–1021 (2000)CrossRefGoogle Scholar
- 9.Gasteratos, A., Andreadis, I.: Soft mathematical morphology: extensions, algorithms and implementations invited contributions. Adv. Imaging Electron Phys. 110, 63–99 (1999)CrossRefGoogle Scholar
- 10.Giardina, C.R., Dougherty, E.R.: Morphological Method in Image and Signal Processing. Prentice Hall, New Jersey (1988)Google Scholar
- 11.Koskinen, L., et al.: Soft morphological filters. In: Proceeings of the SPIE Image Algebra and Morphological Image Processing II, vol. 1568, pp. 262–270 (1991)Google Scholar
- 12.Kuosmanen, P., Astola, J.: Soft morphological filtering. J. Math. Imaging Vis. 5(3), 231–262 (1995)CrossRefGoogle Scholar
- 13.Liu, T., Li, X.: Infrared small targets detection and tracking based on soft morphology Top-Hat and SPRT-PMHT. In: Proceedings of the IEEE Congress on Image Processing and Signal Processing (CISP), Shanghai, vol. 2, pp. 968–972 (2010)Google Scholar
- 14.Maccarone, M.C.: Fuzzy mathematical morphology: concepts and applications. Vistas Astron. 40(4), 469–477 (1996)CrossRefGoogle Scholar
- 15.Nachtegael, M., et al.: A study of interval-valued fuzzy morphology based on the minimum-operator. In: Proceedings of SPIE 7546 - Proceedings of Second International Conference on Digital Image Processing, 26 February 2010, Singapore SPIE, vol. 7546, pp. 75463H-1–75463H-7 (2010)Google Scholar
- 16.Kerre, E.E., Nachtegael, M.: Classical and fuzzy approaches to morphology fuzzy techniques in image processing. In: Kerre, E.E., Nachtegael, M. (eds.) fuzzy techniques in image processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1847-5_1CrossRefzbMATHGoogle Scholar
- 17.Kerre, E.E., Nachtegael, M.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)MathSciNetCrossRefGoogle Scholar
- 18.Pu, C.C., Shih, F.Y.: Threshold decomposition of gray-scale soft morphology into binary soft morphology. CVGIP – Graph. Models Image Process. 57(6), 522–526 (1995)CrossRefGoogle Scholar
- 19.Serra, J.: Image analysis and Mathematical Morphology, 610 p. Academic Press (1982)Google Scholar
- 20.Shih, F.Y., Pu, C.C.: Analysis of the properties of soft morphological filtering using the threshold decomposition. IEEE Trans. Signal Process. 43(2), 539–544 (1995)CrossRefGoogle Scholar
- 21.Sinha, D., Dougherty, E.R.: Fuzzy mathematical morphology. J. Vis. Commun. Image Represent. 3(3), 286–302 (1992)CrossRefGoogle Scholar
- 22.Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)MathSciNetCrossRefGoogle Scholar
- 23.Tickle, A.J., et al.: Upgrading to a soft multifunctional image processor. In: Proceedings of SPIE Optical Design and Engineering III. SPIE, vol. 7100, pp. 71002H-1–71002H-12 (2008)Google Scholar
- 24.Tian, Y., Zhao, C.: Optimization of the soft morphological filters with parallel annealing-genetic strategy. In: Proceedings of the International Conference on Pervasive Computing Signal Processing and Applications (PCSPA), Harbin, China, 17–19 September 2010, pp. 576–581 (2010)Google Scholar
- 25.Wu, M.: Fuzzy morphology and image analysis. In: Proceedings of the 9th ICPR, Rome, 14–17 November 1988, pp. 453–455 (1988)Google Scholar
- 26.Yan, X., Wang, Y.: Edge detection for feather and down image via BEMD and soft morphology. In: Proceedings of International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 24–26 December 2011, vol. 3, pp. 1603–1607 (2011)Google Scholar
- 27.Yang, X.: Fuzzy morphology based feature identification fuzzy information and engineering. In: Cao, B., Wang, G., Guo, S., Chen, S. (eds.) Fuzzy Information and Engineering 2010. Advances in Intelligent and Soft Computing, vol. 78, pp. 607–615. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14880-4_67CrossRefGoogle Scholar
- 28.Gonzalez, R., Woods, R.: The World of Digital Processing. Digital image processing Technosphere, p. 660 (2005)Google Scholar
- 29.Song, J., Delp, E.J.: A study of the generalized morphological filter. Circuits Syst. Signal Process. 11(1), 229–252 (1992)CrossRefGoogle Scholar
- 30.Materon, G.: Random sets and integral geometry, Mir., 318 (1978)Google Scholar
- 31.Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
- 32.De Baets, B., Kerre, E.E., Gupta, M.M.: The fundamentals of fuzzy mathematical morphology: part 1. Int. J. Gen Syst 23, 155–171 (1995)CrossRefGoogle Scholar
- 33.Kitainik, L.: Fuzzy Decision Procedures with Binary Relations, p. 255. Kluwer Academic Publishers, Boston (1993)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019