Scheduling Games with Machine-Dependent Priority Lists

  • Marc SchröderEmail author
  • Tami Tamir
  • Vipin Ravindran Vijayalakshmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11920)


We consider a scheduling game in which jobs try to minimize their completion time by choosing a machine to be processed on. Each machine uses an individual priority list to decide on the order according to which the jobs on the machine are processed. We characterize four classes of instances in which a pure Nash equilibrium (NE) is guaranteed to exist, and show by means of an example, that none of these characterizations can be relaxed. We then bound the performance of Nash equilibria for each of these classes with respect to the makespan of the schedule and the sum of completion times. We also analyze the computational complexity of several problems arising in this model. For instance, we prove that it is NP-hard to decide whether a NE exists, and that even for instances with identical machines, for which a NE is guaranteed to exist, it is NP-hard to approximate the best NE within a factor of \(2-\frac{1}{m}-\epsilon \) for every \(\epsilon >0\).

In addition, we study a generalized model in which players’ strategies are subsets of resources, where each resource has its own priority list over the players. We show that in this general model, even unweighted symmetric games may not have a pure NE, and we bound the price of anarchy with respect to the total players’ costs.


Scheduling games Priority lists Price of anarchy 


  1. 1.
    Ackermann, H., Goldberg, P., Mirrokni, V.S., Röglin, H., Vöcking, B.: A unified approach to congestion games and two-sided markets. Internet Math. 5(4), 439–457 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. Theor. Comput. Sci. 361(2–3), 200–209 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caragiannis, I., Gkatzelis, V., Vinci, C.: Coordination mechanisms, cost-sharing, and approximation algorithms for scheduling. In: Devanur, N.R., Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 74–87. Springer, Cham (2017). Scholar
  5. 5.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103 (1980). Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 345–357. Springer, Heidelberg (2004). Scholar
  7. 7.
    Cole, R., Correa, J., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 92, 306–326 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Marquis de Condorcet, M.J.A.: Essai sur l’application de l’analyse a la probabilite des decisions: rendues a la pluralite de voix. De l’Imprimerie royale (1785)Google Scholar
  9. 9.
    Correa, J., Queyranne, M.: Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost. Naval Res. Logistics 59(5), 384–395 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans. Algorithms 3(1), 4 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chicago J. Theor. Comput. Sci. 1 (2008)Google Scholar
  12. 12.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing nash equilibria for scheduling on restricted parallel links. Theory Comput. Syst. 47(2), 405–432 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gourvès, L., Monnot, J., Moretti, S., Thang, N.K.: Congestion games with capacitated resources. Theory Comput. Syst. 57(3), 598–616 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Graham, R.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)CrossRefGoogle Scholar
  15. 15.
    Hoeksma, R., Uetz, M.: The price of anarchy for utilitarian scheduling games on related machines. Discrete Optim. 31, 29–39 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on nonidentical processors. J. ACM (JACM) 24(2), 280–289 (1977)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Immorlica, N., Li, L.E., Mirrokni, V., Schulz, A.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). Scholar
  20. 20.
    Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under uncertainty. ACM Trans. Econo. Comput. 5, 5–27 (2016)MathSciNetGoogle Scholar
  21. 21.
    Rosenthal, R.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM 62(5), 32 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logistics Q. 3(1–2), 59–66 (1956)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vöcking, B.: Algorithmic Game Theory, Chap. 20: Selfish Load Balancing. Cambridge University Press (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marc Schröder
    • 1
    Email author
  • Tami Tamir
    • 2
  • Vipin Ravindran Vijayalakshmi
    • 1
  1. 1.Chair of Management ScienceRWTH AachenAachenGermany
  2. 2.School of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael

Personalised recommendations