Advertisement

The Pareto Frontier of Inefficiency in Mechanism Design

  • Aris Filos-RatsikasEmail author
  • Yiannis Giannakopoulos
  • Philip Lazos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11920)

Abstract

We study the trade-off between the Price of Anarchy (PoA) and the Price of Stability (PoS) in mechanism design, in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to the above metrics, and observe that two fundamental mechanisms, namely the First-Price (FP) and the Second-Price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms \(\mathcal {SP}_\alpha \) that lie exactly on this frontier. In particular, these mechanisms range smoothly, with respect to parameter \(\alpha \ge 1\) across the frontier, between the First-Price (\(\mathcal {SP}_1\)) and Second-Price (\(\mathcal {SP}_\infty \)) mechanisms.

En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether non-truthful mechanisms can provide better makespan guarantees in the equilibrium, compared to truthful ones. We answer this question in the negative, by proving that the Price of Anarchy of all scheduling mechanisms is at least n, where n is the number of machines.

Keywords

Mechanism design Price of anarchy Price of stability Pareto frontier 

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008).  https://doi.org/10.1137/07068009MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashlagi, I., Dobzinski, S., Lavi, R.: Optimal lower bounds for anonymous scheduling mechanisms. Math. Oper. Res. 37(2), 244–258 (2012).  https://doi.org/10.1287/moor.1110.0534MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caragiannis, I., et al.: Bounding the inefficiency of outcomes in generalized second price auctions. J. Econ. Theory 156, 343–388 (2015).  https://doi.org/10.1016/j.jet.2014.04.010MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christodoulou, G., Filos-Ratsikas, A., Frederiksen, S.K.S., Goldberg, P.W., Zhang, J., Zhang, J.: Social welfare in one-sided matching mechanisms (extended abstract). In: Proceedings of AAMAS, pp. 1297–1298 (2016).  https://doi.org/10.1007/978-3-319-46882-2_3CrossRefGoogle Scholar
  5. 5.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. Algorithmica 55(4), 729–740 (2009).  https://doi.org/10.1007/s00453-008-9165-3MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Feldman, M., Lucier, B., Nisan, N.: Correlated and coarse equilibria of single-item auctions. In: Proceedings of WINE, pp. 131–144 (2016).  https://doi.org/10.1007/978-3-662-54110-4_10CrossRefGoogle Scholar
  7. 7.
    Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided matchings: random priority and beyond. In: Proceedings of SAGT, pp. 1–12 (2014).  https://doi.org/10.1007/978-3-662-44803-8_1Google Scholar
  8. 8.
    Filos-Ratsikas, A., Giannakopoulos, Y., Lazos, P.: The Pareto Frontier of Inefficiency in Mechanism Design. CoRR abs/1809.03454, September 2018. https://arxiv.org/abs/1809.03454
  9. 9.
    Gairing, M.: Covering games: approximation through non-cooperation. In: Proceedings of WINE, pp. 184–195 (2009).  https://doi.org/10.1007/978-3-642-10841-9_18Google Scholar
  10. 10.
    Giannakopoulos, Y., Koutsoupias, E., Kyropoulou, M.: The anarchy of scheduling without money. Theor. Comput. Sci. 778, 19–32 (2019).  https://doi.org/10.1016/j.tcs.2019.01.022MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lucier, B., Singer, Y., Syrgkanis, V., Tardos, E.: Equilibrium in combinatorial public projects. In: Proceedings of WINE, pp. 347–360 (2013). https://doi.org/10.1007/978-3-642-45046-4_28CrossRefGoogle Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009).  https://doi.org/10.1016/j.cosrev.2009.04.003CrossRefzbMATHGoogle Scholar
  13. 13.
    Koutsoupias, E., Vidali, A.: A lower bound of 1+\(\varphi \) for truthful scheduling mechanisms. Algorithmica 66(1), 211–223 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lucier, B., Singer, Y., Syrgkanis, V., Tardos, E.: Equilibrium in combinatorial public projects. In: Proceedings of WINE, pp. 347–360 (2013).  https://doi.org/10.1007/978-3-642-45046-4_28CrossRefGoogle Scholar
  15. 15.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1/2), 166–196 (2001).  https://doi.org/10.1006/game.1999.0790MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ramaswamy, V., Paccagnan, D., Marden, J.R.: Multiagent coverage problems: the trade-off between anarchy and stability. CoRR abs/1710.01409, July 2018. http://arxiv.org/abs/1710.01409
  17. 17.
    Roughgarden, T., Syrgkanis, V., Tardos, E.: The price of anarchy in auctions. J. Artif. Intell. Res. 59, 59–101 (2017).  https://doi.org/10.1613/jair.5272MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002).  https://doi.org/10.1145/506147.506153MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 286–293 (2005).  https://doi.org/10.1145/1064009.1064040
  20. 20.
    Syrgkanis, V., Tardos, E.: Composable and efficient mechanisms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 211–220 (2013).  https://doi.org/10.1145/2488608.2488635

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of LiverpoolLiverpoolUK
  2. 2.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.TU MunichMunichGermany
  4. 4.Sapienza University of RomeRomeItaly

Personalised recommendations