Nano-enabled Multifunctional Materials: Mechanical Behavior and Multi-scale Modeling

  • Konstantinos TserpesEmail author
  • Spiros Pantelakis


This chapter discusses the status and prospective of the nano-enabled MM developed for aircraft applications by focusing on the mechanical behavior and multi-scale modeling. After a general introduction on MM and a description of the existing aircraft applications, results on the mechanical behavior of four different nano-enabled MM are presented and discussed by exploiting observations from scanning electron microscopy images. The materials discussed in this chapter are the MWCNT/PA6 nanocomposite designed for improved mechanical properties and hydrothermal aging resistance; the MWCNT/RTM6-2/GPOSS nanocomposite and the MWCNT/CFRP/GPOSS composite designed for improved mechanical properties, electrical conductivity, and flame resistance; and the CFRP/microcapsule material designed with self-healing characteristics. In the second part of the chapter, multi-scale models developed to predict the properties of nano-enabled MM as functions of material and processing parameters are described, and the basic results are presented.


Multifunctional materials Nanocomposites Carbon nanotubes Graphene Multi-scale modeling Self-healing materials 


  1. Andersson H, Keller M, Moore J, Sottos N, White S (2007) Self healing polymers and composites. Springer Series in Materials Science, pp 19–44Google Scholar
  2. Chanteli A, Tserpes K (2014) Tensile behaviour of carbon nanotube/polypropylene composite material. Plast Rubber Compos 43(10):330–336CrossRefGoogle Scholar
  3. Chanteli A, Tserpes K (2015) Finite element modeling of carbon nanotube agglomerates in polymers. Compos Struct 132:1141–1148CrossRefGoogle Scholar
  4. Chen Y et al (2006) Development and verification of real-time controllers for F/A-18 vertical fin buffet load alleviation. In: SPIE, smart structures and materials 2006: smart structures and integrated systems, San DiegoGoogle Scholar
  5. Erturk A, Inman D (2011) Piezoelectric energy harvestingCrossRefGoogle Scholar
  6. Ferreira A, Nóvoa P, Marques A (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35CrossRefGoogle Scholar
  7. Ghosh S (2009) Self-healing materials. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  8. Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder W (2014a) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23(4):045001CrossRefGoogle Scholar
  9. Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Naddeo C, Russo S, De Vivo B, Lamberti P, Spinelli G, Tucci V (2014b) Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv 4(30):15474–15488CrossRefGoogle Scholar
  10. Guadagno L, Raimondo M, Vietri U, Vertuccio L, Barra G, De Vivo B, Lamberti P, Spinelli G, Tucci V, Volponi R, Cosentino G, De Nicola F (2015) Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Adv 5(8):6033–6042CrossRefGoogle Scholar
  11. Guadagno L, Raimondo M, Vietri U, Naddeo C, Stojanovic A, Sorrentino A, Binder W (2016) Evaluation of the mechanical properties of microcapsule-based self-healing composites. Int J Aerosp Eng 2016:1–10CrossRefGoogle Scholar
  12. Guadagno L, Naddeo C, Raimondo M, Barra G, Vertuccio L, Sorrentino A, Binder W, Kadlec M (2019) Development of self-healing multifunctional materialsGoogle Scholar
  13. Hager M, Greil P, Leyens C, van der Zwaag S, Schubert U (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRefGoogle Scholar
  14. Hayes S, Zhang W, Branthwaite M, Jones F (2007) Self-healing of damage in fibre-reinforced polymer-matrix composites. J R Soc Interface 4(13):381–387CrossRefGoogle Scholar
  15. Inman DJ, Johnson K (2013) Genomics of multifunctional structures and materials for flight. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 8–11 April 2013, Boston, MassachusettsGoogle Scholar
  16. Jha D, Kant T, Singh R (2013) A critical review of recent research on functionally graded plates. Compos Struct 96:833–849CrossRefGoogle Scholar
  17. Kousourakis A, Mouritz A (2010) The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Mater Struct 19(8):085021CrossRefGoogle Scholar
  18. Nemat-Nasser S, Amirkhizi A, Nemat-Nasser S, Plaisted T, Starr A (2005) Multifunctional materials (Chapter 12). In: BIOMIMETICS: biologically inspired technologies, pp 309–338Google Scholar
  19. Olson G (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242CrossRefGoogle Scholar
  20. Pantelakis S, Katsiropoulos C, Polydoropoulou P (2016) Assessing the compression after impact behaviour of innovative multifunctional composites. Nanomater Nanotechnol 6:184798041667962CrossRefGoogle Scholar
  21. Pereira T, Scaffaro R, Nieh S, Arias J, Guo Z, Hahn H (2006) The performance of thin-film Li-ion batteries under flexural deflection. J Micromech Microeng 16(12):2714–2721CrossRefGoogle Scholar
  22. Polydoropoulou P, Katsiropoulos C, Pantelakis S (2016) The synergistic effect of CNTs and flame retardants on the mechanical behavior of aerospace epoxy resin. Polym Eng Sci 57(5):528–536CrossRefGoogle Scholar
  23. Polydoropoulou P, Katsiropoulos C, Loukopoulos A, Pantelakis S (2018) Mechanical behavior of aeronautical composites containing self-healing microcapsules. Int J Struct Integr 9(6):753–767CrossRefGoogle Scholar
  24. Raimondo M, Russo S, Guadagno L, Longo P, Chirico S, Mariconda A, Bonnaud L, Murariu O, Dubois P (2015) Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Adv 5(15):10974–10986CrossRefGoogle Scholar
  25. Sanada K, Suyama T, Nassho Y (2017) Interlaminar shear strength and self-healing of spread carbon fiber/epoxy laminates containing microcapsules. J Soc Mater Sci Jpn 66(4):299–305CrossRefGoogle Scholar
  26. Sofla A, Meguid S, Tan K, Yeo W (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31(3):1284–1292CrossRefGoogle Scholar
  27. Sun L, Huang W, Ding Z, Zhao Y, Wang C, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRefGoogle Scholar
  28. Thomas J, Qidwai M, Matic P, Everett R, Gozdz A, Keennon M (2002) Multifunctional approaches for structure-plus-power concepts. In: 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conferenceGoogle Scholar
  29. Toohey K, Sottos N, Lewis J, Moore J, White S (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585CrossRefGoogle Scholar
  30. Trask R, Williams G, Bond I (2007) Bioinspired self-healing of advanced composite structures using hollow glass fibres. J R Soc Interface 4(13):363–371CrossRefGoogle Scholar
  31. Tserpes K (2011) Strength of graphenes containing randomly dispersed vacancies. Acta Mech 223(4):669–678CrossRefGoogle Scholar
  32. Tserpes K, Chanteli A (2013) Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers. Compos Struct 99:366–374CrossRefGoogle Scholar
  33. Tserpes K, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos Part B 36(5):468–477CrossRefGoogle Scholar
  34. Tserpes K, Papanikos P (2007) The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos Struct 79(4):581–589CrossRefGoogle Scholar
  35. Tserpes K, Papanikos P, Tsirkas S (2006) A progressive fracture model for carbon nanotubes. Compos Part B 37(7–8):662–669CrossRefGoogle Scholar
  36. Tserpes K, Chanteli A, Floros I (2017a) Prediction of yield strength of MWCNT/PP nanocomposite considering the interphase and agglomeration. Compos Struct 168:657–662CrossRefGoogle Scholar
  37. Tserpes K, Moutsompegka E, Murariu O, Bonnaud L, Chanteli A (2017b) Experimental investigation of the effect of hygrothermal aging on the mechanical performance of carbon nanotube/PA6 nanocomposite. Plast Rubber Compos 46(6):239–244CrossRefGoogle Scholar
  38. Tzatzadakis V, Tserpes K (2017) Numerical and analytical evaluation of mechanical, thermal and electrical properties of CNT/polymer multifunctional nanocomposites using representative unit cells. In: Proceedings of the ICCS20 conference, 4–7 September, Paris, FranceGoogle Scholar
  39. Varley R, Craze D, Mouritz A, Wang C (2013) Thermoplastic healing in epoxy networks: exploring performance and mechanism of alternative healing agents. Macromol Mater Eng 298(11):1232–1242CrossRefGoogle Scholar
  40. Wang Y, Inman D (2013) Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. J Compos Mater 47(1):125–146CrossRefGoogle Scholar
  41. Wu D, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522CrossRefGoogle Scholar
  42. Zhu D, Rong M, Zhang M (2015) Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog Polym Sci 49–50:175–220CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations