Advertisement

Laser Joining Processes for Lightweight Aircraft Structures

  • Peer WoizeschkeEmail author
Chapter
  • 54 Downloads

Abstract

This chapter deals with laser-based processes for joining light metals and lightweight structures. At the beginning, a short introduction concerning the tool laser beam is given. A subsequent focus will be on laser welding of aluminum, in particular deep penetration laser welding (keyhole welding). A section addresses the specific challenges of this process and the current solution approaches from research and development. Hereby, the increase in the gap bridging ability, the increase in the seam surface quality, the reduction in the susceptibility to hot cracking, the prevention of spatters and pores, and the increase in process reliability are highlighted. Especially, the laser welding of thin sheets up to thicknesses of a few millimeters is covered. Alongside the joining of aluminum alloys, the joining of dissimilar materials in particular plays a key role in aircraft construction in order to transfer the advantages of a targeted eco- and cost-efficient material mix into an efficient multi-material design of lightweight structures. A further subchapter is therefore dedicated to laser-based joining of aluminum and titanium components by deep penetration as well as heat conduction laser processes. The focus here is on the process technology approaches and the strength of the joints achieved. An outlook into the future is given by the consideration of aluminum-titanium-carbon fiber-reinforced plastic (CFRP) transition structures. However, laser irradiation has a high potential not only as a direct joining tool but also for preprocessing or post processing or as a supplementary process. Therefore, laser-based adhesive surface pretreatment processes as well as the production of novel hybrid laminar flow control (HLFC) structures based on the combination of several laser machining processes as an aerodynamic approach to reduce the kerosene consumption are demonstrated.

Keywords

Lightweight construction Laser material processing Multi-material design Joining Laser welding Aluminum welding Hybrid joint Aluminum-titanium CFRP Joint strength 

Notes

Acknowledgments

The author would like to thank his current and former colleagues at the BIAS Institute in Bremen for their many years of cooperation and various support.

References

  1. Aalderink BJ, Pathiraj B (2010) Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications. Int J Adv Manuf Technol 48:143–154.  https://doi.org/10.1007/s00170-009-2270-xCrossRefGoogle Scholar
  2. Abbas A, de Vicente J, Valero E (2013) Aerodynamic technologies to improve aircraft performance. Aerosp Sci Technol 28(1):100–132.  https://doi.org/10.1016/j.ast.2012.10.008CrossRefGoogle Scholar
  3. Allison A, Scudamore R (2014) European Strategic Research Agenda: Joining (prepared by the Joining Sub-Platform)Google Scholar
  4. Arata Y, Miyamoto I (1974) Some fundamental properties of high power laser beam as a heat source. Trans JWRI 3:1–20CrossRefGoogle Scholar
  5. Arata Y, Matsuda F, Mukae S et al (1973) Effect of weld solidification mode on tensile properties of aluminum weld metal. Trans JWRI 2(2):184–190Google Scholar
  6. Bang H, Bang H, Song H et al (2013) Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des 51(0):544–551.  https://doi.org/10.1016/j.matdes.2013.04.057CrossRefGoogle Scholar
  7. Bautze T (2018) Seam tracking with OCT and beam oscillation for automotive laser remote welding applications. In: European automotive laser applications (EALA)Google Scholar
  8. Beck M (1996) Modellierung des Lasertiefschweißens. B. G. Teubner, StuttgartGoogle Scholar
  9. Bergmann JP (2004) Laserstrahlschweißen von Titanwerkstoffen unter Berücksichtigung des Einflusses des Sauerstoffes. Mat.-wiss. u. Werkstofftech. 35(9):543–556.  https://doi.org/10.1002/mawe.200400776CrossRefGoogle Scholar
  10. Bergmann JP, Bielenin M, Stambke M et al (2013) Effects of diode laser superposition on pulsed laser welding of aluminum. Lasers Manuf (LiM) (41):180–189.  https://doi.org/10.1016/j.phpro.2013.03.068CrossRefGoogle Scholar
  11. Bergmann JP, Bielenin M, Feustel T (2015) Aluminum welding by combining a diode laser with a pulsed Nd: YAG laser. Weld World 59(2):307–315.  https://doi.org/10.1007/s40194-014-0218-8CrossRefGoogle Scholar
  12. Berkmanns J, Behler K, Beyer E (1992) Der Laser—ein neues Werkzeug zum Schweißen von Aluminiumwerkstoffen. In: Proceedings of 4th European conference on laser treatment of materials ECLAT ’92, Oberursel, pp 151–156Google Scholar
  13. Brock J, Aidun D (1995) The effect of titanium and boron on GMAW weldments. In: Proceedings of the 6th international conference on aluminum weldments, pp 343–356Google Scholar
  14. Cahoon JR, Tandon KN, Chaturvedi MC (1992) Effect of gravity level on grain refinement in aluminum alloys. Metall Trans A 23:3399–3404Google Scholar
  15. Cao X, Wallace W, Immarigeon J-P et al (2003) Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater Manuf Process 18(1):23–49.  https://doi.org/10.1081/AMP-120017587CrossRefGoogle Scholar
  16. Casalino G, Mortello M (2016) Modeling and experimental analysis of fiber laser offset welding of Al-Ti butt joints. Int J Adv Manuf Technol 83:89–98.  https://doi.org/10.1007/s00170-015-7562-8CrossRefGoogle Scholar
  17. Casalino G, Mortello M, Peyre P (2015) Yb–YAG laser offset welding of AA5754 and T40 butt joint. J Mater Process Technol 223:139–149.  https://doi.org/10.1016/j.jmatprotec.2015.04.003CrossRefGoogle Scholar
  18. Chen W, Molian P (2007) Dual-beam laser welding of ultra-thin AA 5052-H19 aluminum. Int J Adv Manuf Technol 39:889–897.  https://doi.org/10.1007/s00170-007-1278-3CrossRefGoogle Scholar
  19. Chen Y, Chen S, Li L (2009) Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method. Int J Adv Manuf Technol 44(3–4):265–272.  https://doi.org/10.1007/s00170-008-1837-2CrossRefGoogle Scholar
  20. Chen S, Li L, Chen Y et al (2010) Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. Trans Nonferrous Metals Soc China 20(1):64–70.  https://doi.org/10.1016/S1003-6326(09)60098-4CrossRefGoogle Scholar
  21. Cho W-I, Schultz V, Woizeschke P (2018a) Numerical study of the effect of the oscillation frequency in buttonhole welding. J Mater Process Technol 261:202–212.  https://doi.org/10.1016/j.jmatprotec.2018.05.024CrossRefGoogle Scholar
  22. Cho W-I, Woizeschke P, Schultz V (2018b) Simulation of molten pool dynamics and stability analysis in laser buttonhole welding. Procedia CIRP 74:687–690.  https://doi.org/10.1016/j.procir.2018.08.042CrossRefGoogle Scholar
  23. Cross CE (2005) On the origin of weld solidification cracking. In: Böllinghaus T, Herold H (eds) Hot cracking phenomena in welds. Springer, Berlin, pp 3–18CrossRefGoogle Scholar
  24. Dausinger F (1995) Strahlwerkzeug Laser: Energiekopplung und Prozesseffektivität. Zugl.: Stuttgart, Univ., Habil.-Schr. Laser in der Materialbearbeitung. Teubner, StuttgartGoogle Scholar
  25. Dev S, Stuart AA, Kumaar RRD et al (2007) Effect of scandium additions on microstructure and mechanical properties of Al–Zn–Mg alloy welds. Mater Sci Eng A 467(1–2):132–138.  https://doi.org/10.1016/j.msea.2007.02.080CrossRefGoogle Scholar
  26. Dilthey U (2005) Schweißtechnische Fertigungsverfahren 2: Verhalten der Werkstoffe beim Schweißen, 3., bearbeitete Auflage. VDI-Buch. Springer, BerlinGoogle Scholar
  27. Dilthey U (2006) Schweißtechnische Fertigungsverfahren 1: Schweiß- und Schneidtechnologien, 3., bearbeitete Auflage. VDI-Buch. Springer, BerlinGoogle Scholar
  28. Dressler U, Biallas G, Alfaro Mercado U (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A 526(1–2):113–117.  https://doi.org/10.1016/j.msea.2009.07.006CrossRefGoogle Scholar
  29. Farrel WJ, Ferrario JD (1987) A computer-controlled, wide-bandwidth deflection system for electron beam welding and heat treating. Weld J 10:41–49Google Scholar
  30. Fetzer F, Hagenlocher C, Weber R (2018) High power, high speed, high quality. LTJ 15(3):28–31.  https://doi.org/10.1002/latj.201800017CrossRefGoogle Scholar
  31. Fonseca de Arruda AC, Prates de Campos Filho M (1983) Rheocasting techniques applied to grain refinement of aluminum alloys. In: Proceedings of the conference on solidification technology in the foundry and cast house, Coventry (UK), pp 143–146Google Scholar
  32. Fuji A, Ameyama K, North TH (1995) Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints. J Mater Sci 30CrossRefGoogle Scholar
  33. Gao M, Chen C, Gu Y et al (2014) Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys. Materials 7(3):1590–1602.  https://doi.org/10.3390/ma7031590CrossRefGoogle Scholar
  34. Gatzen M (2014) Durchmischung beim Laserstrahltiefschweißen unter dem Einfluss niederfrequenter Magnetfelder. Dissertation. Strahltechnik, Bd. 55. BIAS Verlag, BremenGoogle Scholar
  35. Geisel M (2002) Prozeßkontrolle und -steuerung beim Laserstrahlschweißen mit den Methoden der nichtlinearen Dynamik. Meisenbach BambergGoogle Scholar
  36. Göbel G, Brenner B, Beyer E (2007) New application possibilities for fiber laser welding. In: Lu Y (ed) 26th International congress on applications of lasers & electro-optics (ICALEO 2007), Orlando, pp 102–108Google Scholar
  37. Gref W (2005) Laserstrahlschweißen von Aluminiumwerkstoffen mit der Fokusmatrixtechnik. Laser in der Materialbearbeitung. Utz, MünchenGoogle Scholar
  38. Gruss H (2008) Schweißgerechte Struktur- und Prozessstrategien im Flugzeugbau. DissertationGoogle Scholar
  39. Gruss H, Herold H, Streitenberger M (2008) Verbesserung des Strukturverhaltens laserstrahlgeschweißter Haut-Stringer-Verbindungen. In: 6. Laser-Anwenderforum Bremen, BIAS-VerlagGoogle Scholar
  40. Habenicht G (2009) Kleben: Grundlagen, Technologien, Anwendungen, 6., aktualisierte Aufl. VDI. Springer, BerlinCrossRefGoogle Scholar
  41. Haboudou A, Peyre P, Vannes AB et al (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mater Sci Eng A 363(1):40–52.  https://doi.org/10.1016/S0921-5093(03)00637-3CrossRefGoogle Scholar
  42. He X, Zhang Y, Xing B et al (2015) Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater Des 71:26–35.  https://doi.org/10.1016/j.matdes.2015.01.005CrossRefGoogle Scholar
  43. Heider P (1994) Lasergerechte Konstruktion und lasergerechte Fertigungsmittel zum Schweissen grossformatiger Aluminium-Strukturbauteile, Als Ms. gedr. Fortschrittberichte VDI : Reihe 2, Fertigungstechnik, Nr. 326. VDI-Verl., DüsseldorfGoogle Scholar
  44. Heimerdinger C (2003) Laserstrahlschweißen von Aluminiumlegierungen für die Luftfahrt. Zugl.: Stuttgart, Univ., Diss., 2003. Laser in der Materialbearbeitung. Utz, MünchenGoogle Scholar
  45. Herrmann A, Schiebel P, Hoffmeister C et al (2008) Verbindungen zwischen einem monolithischen Metallbauteil und einem endlosfaserverstärkten Laminatbauteil sowie Verfahren zur Herstellung derselben (DE102008047333B4)Google Scholar
  46. Heß A, Bassi C, Schellinger F (2011) Heißrissfreies Remotelaserstrahlfügen von 6xxxer Aluminiumwerkstoffen. Laser Mgazin 2:30–31Google Scholar
  47. Hilbinger RM (2001) Heißrissbildung beim Schweißen von Aluminium in Blechrandlage. Zugl.: Bayreuth, Univ., Diss., 2001. Institut für Materialforschung—Bayreuth, vol 9. Utz Wiss, MünchenGoogle Scholar
  48. Hohenberger B (2003) Laserstrahlschweissen mit Nd:Yag-Doppelfokustechnik: Steigerung von Prozeßstabilität, Flexibilität und verfügbarer Strahlleistung. Zugl.: Stuttgart, Univ., Diss., 2002. Laser in der Materialbearbeitung. Utz, MünchenGoogle Scholar
  49. Janaki Ram GD, Mitra TK, Shankar V et al (2003) Microstructural refinement through inoculation of type 7020 Al–Zn–Mg alloy welds and its effect on hot cracking and tensile properties. J Mater Process Technol 142(1):174–181.  https://doi.org/10.1016/S0924-0136(03)00574-0CrossRefGoogle Scholar
  50. Jin X, Li L (2004) An experimental study on the keyhole shapes in laser deep penetration welding. Opt Lasers Eng 41(5):779–790.  https://doi.org/10.1016/S0143-8166(03)00034-4CrossRefGoogle Scholar
  51. Jones L, Alfile J-P, Aubert P et al (2000) Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance. Fusion Eng Des 51–52:985–991.  https://doi.org/10.1016/S0920-3796(00)00412-9CrossRefGoogle Scholar
  52. Kahraman N, Gulenc B, Findik F (2007) Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates. Int J Impact Eng 34(8):1423–1432.  https://doi.org/10.1016/j.ijimpeng.2006.08.003CrossRefGoogle Scholar
  53. Kaplan AFH, Powell J (2011) Spatter in laser welding. J Laser Appl 23(3):32005.  https://doi.org/10.2351/1.3597830CrossRefGoogle Scholar
  54. Kappelsberger E (1987) Werkstückspezifische Bedingungen beim Laserschweißen: Laser/Optoelektronik in der Technik/Laser/Optoelectronics in EngineeringGoogle Scholar
  55. Katayama S (2013) The unweldables. Laser Community 2:24–25Google Scholar
  56. Katayama S, Kawahito Y (2009) Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects. In: Gapontsev DV, Kliner DA, Dawson JW et al (eds) SPIE LASE: lasers and applications in science and engineering. SPIE, 71951RGoogle Scholar
  57. Katayama S, Seto N, Kim JD et al (1997) Formation mechanism and reduction method of porosity in laser welding of stainless steel. In: Proceedings of the 16th international congress on applications of lasers and electro-optics (ICALEO), pp 83–92Google Scholar
  58. Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser welding. Phys Procedia 39:8–16.  https://doi.org/10.1016/j.phpro.2012.10.008CrossRefGoogle Scholar
  59. Katayama S, Mizutani M, Kawahito Y et al (2015) Fundamental research of 100 kW fiber laser welding technology. In: Proceedings of the lasers in manufacturing conference (LiM), #342Google Scholar
  60. Kempa S (2014) Potentiale und Grenzen beim thermischen Fügen von Multimaterial-Verbindungen. Schweißtechnik Soudure 2014(1):36–39Google Scholar
  61. Klassen M (2000) Prozeßdynamik und resultierende Prozeßinstabilitäten beim Laserstrahlschweißen von Aluminium. Dissertation, Universiät BremenGoogle Scholar
  62. Kocik R (2009) Analyse und Bewertung der mechanisch-technologischen Eigenschaften von geschweissten Mischverbindungen aus Aluminium und Titan. Forschungsberichte aus der Stiftung Institut für Werkstofftechnik, Bremen, Bd. 46. Shaker, AachenGoogle Scholar
  63. Kocik R, Vugrin T, Seefeld T (2006) Laserstrahlschweißen im Flugzeugbau: Stand und künftige Anwendungen. In: 5. Laser-Anwenderforum Bremen, BIAS-VerlagGoogle Scholar
  64. Kogel-Hollacher M, Schoenleber M, Bautze T et al (2016) Measurement and closed-loop control of the penetration depth in laser materials processing. In: 9th international conference on photonic technologies (LANE)Google Scholar
  65. Kou S (1987) Welding metallurgy. A Wiley Interscience publication, Wiley, New YorkGoogle Scholar
  66. Kreimeyer M, Vollertsen F (2005) Processing titanium-aluminum hybrid joints for aircraft applications. In: Proceedings of the third international WLT-conference on lasers in manufacturing 2005, LiM2005, MunichGoogle Scholar
  67. Kreimeyer M, Wagner F, Zerner I et al (2001) Laser beam joining of aluminium with titanium with the use of an adapted working head. In: DVS-Berichte, vol 212. Verlag für Schweißen und verwandte Verfahren, DVS-Verlag, pp 317–321Google Scholar
  68. Kreimeyer M, Wagner F, Vollertsen F (2005) Laser processing of aluminum-titanium-tailored blanks. Opt Lasers Eng 43(9):1021–1035.  https://doi.org/10.1016/j.optlaseng.2004.07.005CrossRefGoogle Scholar
  69. Kutsuna M, Shido K, Okada T (2002) Fan shaped cracking test of aluminum alloys in laser welding. In: Miyamoto I, Kobayashi KF, Sugioka K et al (eds) LAMP 2002: international congress on laser advanced materials processing. SPIE, p 230Google Scholar
  70. Lin R, Wang H-P, Lu F et al (2017) Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int J Heat Mass Transf 108:244–256.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.019CrossRefGoogle Scholar
  71. Liu W, Tian X, Zhang X (1996) Preventing weld hot cracking by synchronous rolling during welding. Weld J 75(9):297.s–304.sGoogle Scholar
  72. Ma Z, Zhao W, Yan J et al (2011) Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg. Ultrason Sonochem 18(5):1062–1067.  https://doi.org/10.1016/j.ultsonch.2011.03.025CrossRefGoogle Scholar
  73. Maina MR, Okamoto Y, Okada A et al (2018) High surface quality welding of aluminum using adjustable ring-mode fiber laser. J Mater Process Technol 258:180–188.  https://doi.org/10.1016/j.jmatprotec.2018.03.030CrossRefGoogle Scholar
  74. Majumdar B, Galun R, Weisheit A et al (1997) Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser. J Mater Sci 32:6191–6200CrossRefGoogle Scholar
  75. Martin B, Loredo A, Pilloz M et al (2001) Characterisation of cw Nd: YAG laser keyhole dynamics. Opt Laser Technol 33(4):201–207.  https://doi.org/10.1016/S0030-3992(01)00014-7CrossRefGoogle Scholar
  76. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann Manuf Technol 64(2):679–699.  https://doi.org/10.1016/j.cirp.2015.05.006CrossRefGoogle Scholar
  77. Marya M, Marya S, Priem D (2005) On the characteristics of electromagnetic welds between aluminium and other metals and alloys. Weld World 49(5/6):74–84CrossRefGoogle Scholar
  78. Mathers G (2002) The welding of aluminium and its alloys. CRC Press, Boca RatonCrossRefGoogle Scholar
  79. Matsuda F, Nakata K, Nishio Y et al (1986) Effect of zirconium addition on improvement of solidification crack susceptibility of Al-Zn-Mg alloy weld—fundamental research on solidification crack susceptibility of Al-Zn-Mg alloy weld (Report 1). Q J Jpn Weld Soc 4(1):115–120.  https://doi.org/10.2207/qjjws.4.115CrossRefGoogle Scholar
  80. Matsunawa A, Seto N, Kim J-D et al (eds) (2000) Dynamics of keyhole and molten pool in high-power CO2 laser welding, 3888 ISGoogle Scholar
  81. McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34(1):247–260.  https://doi.org/10.1179/imr.1989.34.1.247CrossRefGoogle Scholar
  82. Messaoudia H, Mehrafsun S, Schrauf G et al (2015) Highly reproducible laser micro drilling of titanium-based HLFC sections. In: Lasers in manufacturing, Munich, GermanyGoogle Scholar
  83. Miriyev A, Levy A, Kalabukhov S et al (2016) Interface evolution and shear strength of Al/Ti bi-metals processed by a spark plasma sintering (SPS) apparatus. J Alloys Compd 678:329–336.  https://doi.org/10.1016/j.jallcom.2016.03.137CrossRefGoogle Scholar
  84. Mittelstädt C, Seefeld T, Woizeschke P et al (2018) Laser welding of hidden T-joints with lateral beam oscillation. Procedia CIRP 74:456–460.  https://doi.org/10.1016/j.procir.2018.08.151CrossRefGoogle Scholar
  85. Miyamoto (1997) Laser welding (2)—welding of thick plate. In: Proceedings of the 41st laser materials processing conference, pp 21–34Google Scholar
  86. Möller F, Thomy C, Vollertsen F et al (2010) Novel method for joining CFRP to aluminium. In: Laser assisted net shape engineering 6, Proceedings of the LANE 2010, Part 2 5, pp 37–45.  https://doi.org/10.1016/j.phpro.2010.08.027CrossRefGoogle Scholar
  87. Möller F, Thomy C, Vollertsen F (2012) Joining of titanium-aluminium seat tracks for aircraft applications—system technology and joint properties. Weld World 56(3–4):108–114.  https://doi.org/10.1007/BF03321341CrossRefGoogle Scholar
  88. Nakashiba S, Okamoto Y, Sakagawa T et al (2011) Welding characteristics of aluminum alloy by pulsed Nd:YAG laser with pre- and post-irradiation of superposed continuous diode laser. In: Proceedings of international congress on applications of lasers and electro optics (ICALEO), #M205Google Scholar
  89. Nesterov AF, Trubitsin AP, Prokhorov AN (1990) Special features of resistance welding titanium to aluminium. Weld Int 4(6):464–466.  https://doi.org/10.1080/09507119009447761CrossRefGoogle Scholar
  90. Ono M, Shiozaki T, Shinbo Y et al (2001) Development of high power laser pipe welding process. Q J Jpn Weld Soc 19(2):233–240.  https://doi.org/10.2207/qjjws.19.233CrossRefGoogle Scholar
  91. Ostermann F (1998) Anwendungstechnologie Aluminium. VDI-Buch. Springer, BerlinCrossRefGoogle Scholar
  92. Palm F (2000) Bericht aus der Werkstoff-Forschung der DaimlerChryslerAG in Ottobrunn zum Schweißen im Flugzeugbau. In: DVS-Berichte, vol 208. DVS-Media, pp 53–58Google Scholar
  93. Ploshikhin V, Prikhodovsky A, Makhutin M et al (2004) Rechnergestützte Entwicklung der Verfahren zum rissfreien Laserstrahlschweißen. NMB BayreuthGoogle Scholar
  94. Ploshikhin V, Prikhodovski A, Ilin A et al (2007) Computer aided development of the crack-free laser welding processes. Key Eng Mat 353–358:1984–1994.  https://doi.org/10.4028/www.scientific.net/KEM.353-358.1984CrossRefGoogle Scholar
  95. Pretorius T, Kreimeyer M, Sepold G et al (2004) Simulation of laser beam welded aluminium joints. In: Proceedings of 14th international conference on computer technology in welding and manufacturingGoogle Scholar
  96. Radaj D (1992) Heat effects of welding: temperature field, residual stress, distortion. Springer, BerlinCrossRefGoogle Scholar
  97. Radel T (2018) Mechanical manipulation of solidification during laser beam welding of aluminum. Weld World 62(1):29–38.  https://doi.org/10.1007/s40194-017-0530-1CrossRefGoogle Scholar
  98. Radel T, Woizeschke P (2018) Reduction of hot cracking susceptibility during laser welding of aluminum by vibrations. Weld World 41(1):164.  https://doi.org/10.1007/s40194-018-00680-2CrossRefGoogle Scholar
  99. Radscheit CR (1997) Laserstrahlfügen von Aluminium mit Stahl. Dissertation. Strahltechnik, Bd. 4. BIAS-Verlag, BremenGoogle Scholar
  100. Reitemeyer D (2012) Stabilisierung der Fokuslage beim Schweißen mit Faser- und Scheibenlasern. Zugl.: Bremen, Univ., Dissertation. Strahltechnik, Bd. 49. BIAS-Verlag, BremenGoogle Scholar
  101. Reitemeyer D, Seefeld T, Vollertsen F et al (2009) Influences on the laser induced focus shift in high power fiber laser welding. Lasers Manuf (LiM):293–298Google Scholar
  102. Reitemeyer D, Seefeld T, Vollertsen F (2010) Online focus shift measurement in high power fiber laser welding. Phys Procedia 5:455–463.  https://doi.org/10.1016/j.phpro.2010.08.073CrossRefGoogle Scholar
  103. Reitemeyer D, Schultz V, Syassen F et al (2013) Laser welding of large scale stainless steel aircraft structures. Lasers Manuf (LiM) 41:106–111.  https://doi.org/10.1016/j.phpro.2013.03.057CrossRefGoogle Scholar
  104. Reitz V, Meinhard D, Ruck S et al (2017) A comparison of IR- and UV-laser pretreatment to increase the bonding strength of adhesively joined aluminum/CFRP components. Compos A Appl Sci Manuf 96:18–27.  https://doi.org/10.1016/j.compositesa.2017.02.014CrossRefGoogle Scholar
  105. Russell JD (1997) Application of laser welding in shipyards. In: Beckmann LHJF (ed) Lasers and optics in manufacturing III. SPIE, pp 174–183Google Scholar
  106. Scaggs M, Haas G (2010). Thermal lensing compensation objective for high power lasers. International Congress on Applications of Lasers & Electro-Optics (ICALEO2010), pp 1511–1517. https://doi.org/10.2351/1.5062011
  107. Schempp P, Cross CE, Schwenk C et al (2012) Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082. Weld World 56(9):95–104.  https://doi.org/10.1007/BF03321385CrossRefGoogle Scholar
  108. Schempp P, Cross CE, Häcker R et al (2013) Influence of grain size on mechanical properties of aluminium GTA weld metal. Weld World 57(3):293–304.  https://doi.org/10.1007/s40194-013-0026-6CrossRefGoogle Scholar
  109. Schneider A, Avilov V, Gumenyuk A et al (2013) Laser beam welding of aluminum alloys under the influence of an electromagnetic field. Lasers Manuf (LiM) (41):4–11.  https://doi.org/10.1016/j.phpro.2013.03.045CrossRefGoogle Scholar
  110. Schoer H (1980) Über das Schweißrissigkeitsverhalten von Aluminiumwerkstoffen. Metall 34(6):546–551Google Scholar
  111. Schrauf G (2005) Status and perspectives of laminar flow. Aeronaut J 109(1102):639–644.  https://doi.org/10.1017/S000192400000097XCrossRefGoogle Scholar
  112. Schubert E, Zerner I, Sepold G et al (1997) Laser beam joining of material combinations for automotive applications. In: Beckmann LHJF (ed) Lasers and optics in manufacturing III. SPIE, pp 212–221Google Scholar
  113. Schubert E, Klassen M, Skupin J et al (1998) Effect of filler wire on process stability in laser beam welding of aluminium-alloys. In: Proceedings of the 6th international conference on welding and melting by electron and laser beams (CISFFEL), pp 195–204Google Scholar
  114. Schultz V, Seefeld T (2015) Schlussbericht - Strahlmodulation beim Schweißen mit hoch fokussierenden Festkörperlasern mit Zusatzwerkstoff (Spaltüberbrückbarkeit), IGF-Vorhaben 17.558NGoogle Scholar
  115. Schultz V, Woizeschke P (2018) High seam surface quality in keyhole laser welding: buttonhole welding. J Manuf Mater Process (JMMP) 2(4):78.  https://doi.org/10.3390/jmmp2040078CrossRefGoogle Scholar
  116. Schultz V, Seefeld T, Vollertsen F (2014a) Gap bridging ability in laser beam welding of thin aluminum sheets. Phys Procedia 56:545–553.  https://doi.org/10.1016/j.phpro.2014.08.037. 8th International conference on laser assisted net shape engineering LANE 2014CrossRefGoogle Scholar
  117. Schultz V, Thomy C, Vollertsen F et al (2014b) Development of a laser welding and straightening process for aircraft structures for hybrid laminar flow control. In: IIW annual assembly: Doc. no. IV-1180-14Google Scholar
  118. Schultz V, Cho W-I, Woizeschke P et al (2017a) Laser deep penetration weld seams with high surface quality. In: Overmeyer L, Reisgen U, Ostendorf A, Schmidt M (eds) Lasers in manufacturing (LiM2017). USB stickGoogle Scholar
  119. Schultz V, Stephen A, Kalms M et al (2017b) Laser ermöglichen die Fertigung kraftstoffsparender Flugzeugstrukturen. Laser Magazin 5:23–24Google Scholar
  120. Schulze G (2010) Die Metallurgie des Schweissens: Eisenwerkstoffe—nichteisenmetallische Werkstoffe, 4., neu bearbeitete Aufl. VDI-Buch. Springer, HeidelbergCrossRefGoogle Scholar
  121. Schumacher J (2002) Erfahrungen bei der Serieneinführung für Laserstrahlschweißen im Flugzeugbau. In: 4. Laser-Anwenderforum. BIAS Verlag, Bremen, pp 247–256Google Scholar
  122. Schumacher J, Irretier A, Kocik R et al (2007) Investigation of laser-beam joined titanium-aluminum hybrid structures. In: Applied production technology APT’07, pp 149–160Google Scholar
  123. Schumacher J, Clausen B, Zoch H-W (2014) Strength and failure behaviour of carbon fibre reinforced plastics (CFRP)-aluminium seam structures. Mat.-wiss. u. Werkstofftech 45(12):1108–1115.  https://doi.org/10.1002/mawe.201400359CrossRefGoogle Scholar
  124. Semiatin SL, Seetharaman V, Weiss I (1998) Hot workability of titanium and titanium aluminide alloys—an overview. Mater Sci Eng A 243(1-2):1–24.  https://doi.org/10.1016/S0921-5093(97)00776-4CrossRefGoogle Scholar
  125. Seto N, Katayama S, Matsunawa A (2001) Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys. Weld Int 15(3):191–202.  https://doi.org/10.1080/09507110109549341CrossRefGoogle Scholar
  126. Shi P, Wan P (2016) Numerical simulation of formation process of keyhole-induced pore for laser deep penetration welding. In: International conference on advanced electronic science and technology (AEST), pp 368–373Google Scholar
  127. Skoda P, Dujak J, Michalicka P (op. 1996) Creation of heterogeneous weld joints of titanium- and aluminium-based materials by electron beam welding. In: Welding science & technology: Japan—Slovak welding symposium: proceedings of the international welding conference, 5–7 March 1996. Faculty of Metallurgy, Department of Materials Science, Košice, pp 157–160Google Scholar
  128. Song Z, Nakata K, Wu A et al (2013) Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mater Sci Eng A 560(0):111–120.  https://doi.org/10.1016/j.msea.2012.09.044CrossRefGoogle Scholar
  129. Specht U (2015) Untersuchungen zur Entstehung laserinduzierter nanoporöser Strukturen auf Titanoberflächen für langzeitstabile Klebungen. Dissertation. University of BremenGoogle Scholar
  130. Specht U, Ihde J, Mayer B (2014) Laser induced nano-porous Ti–O-layers for durable titanium adhesive bonding. Mat.-wiss. u. Werkstofftech 45(12):1116–1122.  https://doi.org/10.1002/mawe.201400360CrossRefGoogle Scholar
  131. Sun Z, Kuo M (1999) Bridging the joint gap with wire feed laser welding. J Mater Process Technol 87(1):213–222.  https://doi.org/10.1016/S0924-0136(98)00346-XCrossRefGoogle Scholar
  132. Takemoto T, Nakamura H, Okamoto I (1990) Aluminum brazing filler metals for making aluminum to titanium joints in a vacuum (physics, process, instrument & measurement). Trans JWRI 19(1):39–44Google Scholar
  133. Tang Z (2014) Heißrissvermeidung beim Schweißen von Aluminiumlegierungen mit einem Scheibenlaser. Dissertation. Strahltechnik, Bd. 53. BIAS VerlagGoogle Scholar
  134. Tang Z, Vollertsen F (2014) Influence of grain refinement on hot cracking in laser welding of aluminum. Weld World 58(3):355–366.  https://doi.org/10.1007/s40194-014-0121-3CrossRefGoogle Scholar
  135. Thomy C, Vollertsen F (2007) Hybrid Welding of thin sheet material with single-mode fibre laser. In: Proceedings of the IIW International Institute of Welding Commission XII intermediate meeting, IIW Doc. Nr. XII-1912-07 (CD)Google Scholar
  136. Tomashchuk I, Sallamand P, Cicala E et al (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V. J Mater Process Technol 217:96–104.  https://doi.org/10.1016/j.jmatprotec.2014.10.025CrossRefGoogle Scholar
  137. Tsukamoto S, Kawaguchi I, Honda H et al (2001) Suppression of porosity using pulse modulation of laser power in 20kW laser welding. In: Proceedings of the 20th international congress on applications of lasers and electro-optics (ICALEO), pp D607–D615Google Scholar
  138. Vollertsen F (2009) Properties and prospects of high brightness solid state lasers. LTJ 6(5):27–31.  https://doi.org/10.1002/latj.200990071CrossRefGoogle Scholar
  139. Vollertsen F, Neumann S (2009) High brightness solid state laser: development and application. In: Proceedings of the 5th international congress on laser advanced material processing LAMP09, #317Google Scholar
  140. Vollertsen F, Woizeschke P, Schultz V et al (2017) Developments for laser joining with high-quality seam surfaces. Lightw Des Worldw 10(5):6–13.  https://doi.org/10.1007/s41777-017-0041-1CrossRefGoogle Scholar
  141. Volpp J (2017) Dynamik und Stabilität der Dampfkapillare beim Laserstrahltiefschweißen. Dissertation. Strahltechnik, Bd. 63. BIAS VerlagGoogle Scholar
  142. Volpp J, Srowig J, Vollertsen F (2016) Spatters during laser deep penetration welding with a bifocal optic. AMR 1140:123–129.  https://doi.org/10.4028/www.scientific.net/AMR.1140.123CrossRefGoogle Scholar
  143. Wang H, Vivek A, Wang Y et al (2016) Laser impact welding application in joining aluminum to titanium. J Laser Appl 28(3):32002.  https://doi.org/10.2351/1.4946887CrossRefGoogle Scholar
  144. Wilden J, Bergmann JP (2004) Manufacturing of titanium/aluminium and titanium/steel joints by means of diffusion welding. Weld Cut 3:285–290Google Scholar
  145. Wilden J, Neumann T (2010) Moderne Strahlquellen im Einsatz – Welche metallurgischen Ansätze ergeben sich? In: Strahlschweißen von Aluminium. DVS-Media, Düsseldorf, pp 39–44Google Scholar
  146. Wilden J, Bergmann JP, Reich S et al (2007a) Grundlegende Untersuchungen zum flussmittelfreien Löten von Leichtmetall-Material-Mix KonstruktionenGoogle Scholar
  147. Wilden J, Bergmann JP, Holtz R et al (2007b) Einsatz von gepulsten Nd:YAG-Lasern für das Fügen von Werkstoffen und Werkstoffkombinationen mit anspruchsvollen EigenschaftenGoogle Scholar
  148. Woizeschke P (2017) Eigenschaften laserstrahlgefügter Mischverbindungen aus Aluminium und Titan in Abhängigkeit der Kantengeometrie und Halbzeugstruktur. Dissertation, University of Bremen, Strahltechnik, Bd. 65, Bremen, urn:nbn:de:gbv:46-00106005-12Google Scholar
  149. Woizeschke P, Vollertsen F (2014) Distortion effects in deep penetration laser micro welding: challenges and results. Lasers Eng 28(5-6):337–359Google Scholar
  150. Woizeschke P, Vollertsen F (2015) Fracture analysis of competing failure modes of aluminum-CFRP joints using three-layer titanium laminates as transition. J Mater Eng Perform 24(9):3558–3572.  https://doi.org/10.1007/s11665-015-1638-3CrossRefGoogle Scholar
  151. Woizeschke P, Vollertsen F (2016) A strength-model for laser joined hybrid aluminum–titanium transition structures. CIRP Ann Manuf Technol 65(1):241–244.  https://doi.org/10.1016/j.cirp.2016.04.027CrossRefGoogle Scholar
  152. Woizeschke P, Vollertsen F (2018) Joining of aluminum to titanium sheets/ laminates for aluminum-CFRP transitions. In: Herrmann AS (ed) Outcome of the research unit FOR1224: CFRP-Al transition structures in lightweight constructions: “Schwarz-Silber”. BoD, Norderstedt, pp 31–76Google Scholar
  153. Woizeschke P, Wottschel V (2013) Recent developments for laser beam joining of CFRP-aluminum structures. materials science engineering, symposium B6—hybrid structures. Procedia Mater Sci 2:250–258.  https://doi.org/10.1016/j.mspro.2013.02.031CrossRefGoogle Scholar
  154. Woizeschke P, Mosgowoi E, Vollertsen F (2015) Decreasing pore formation in multiple-sheet laser joining with interfacial polymeric contaminations. Weld World 59(5):683–692.  https://doi.org/10.1007/s40194-015-0244-1CrossRefGoogle Scholar
  155. Woizeschke P, Kügler H, Vollertsen F (2016a) Bewerten und Vergleichen der Spaltüberbrückbarkeit unterschiedlicher thermischer Fügeverfahren—Der Benchmark-Spalt. Der Praktiker 8:356–358Google Scholar
  156. Woizeschke P, Schultz V, Messaoudia H et al (2016b) Laser processing of lightweight aircraft structures. (Keynote). In: Proceedings of the 84th laser materials processing conference, Japan Laser Processing Society (JLPS), pp 21–26Google Scholar
  157. Woizeschke P, Radel T, Nicolay P et al (2017) Laser deep penetration welding of an aluminum alloy with simultaneously applied vibrations. Lasers Manuf Mater Process 4(1):1–12.  https://doi.org/10.1007/s40516-016-0032-9CrossRefGoogle Scholar
  158. Xie J (2002) Dual beam laser welding. Weld J 81(10):223–230Google Scholar
  159. Yamaguchi M, Umakoshi Y, Yamane T (1987) Plastic deformation of the intermetallic compound Al3Ti. Philos Mag A 55(3):301–315.  https://doi.org/10.1080/01418618708209869CrossRefGoogle Scholar
  160. Yamaguchi M, Inui H, Ito K (2000) High-temperature structural intermetallics. Acta Mater 48(1):307–322.  https://doi.org/10.1016/S1359-6454(99)00301-8CrossRefGoogle Scholar
  161. Yang YP, Dong P, Zhang J et al (2000) A hot-cracking mitigation technique for welding high-strength aluminum alloy. Weld Res Suppl 9:17Google Scholar
  162. Young TM, Humphreys B, Fielding JP (2001) Investigation of hybrid laminar flow control (HLFC) surfaces. Aircr Des 4(2–3):127–146.  https://doi.org/10.1016/S1369-8869(01)00010-6CrossRefGoogle Scholar
  163. Zerner I (2003) Sitzschiene(DE10360807B4). Accessed 18 Oct 2016Google Scholar
  164. Zhang J, Weckman DC, Zhou Y (2008) Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd:YAG laser welds. Weld Res 87:18–30Google Scholar
  165. Zhang X, He X, Xing B et al (2016) Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys. Mater Des 97:108–117.  https://doi.org/10.1016/j.matdes.2016.02.075CrossRefGoogle Scholar
  166. Zhao H, DebRoy T (2003) Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. J Appl Phys 93(12):10089–10096.  https://doi.org/10.1063/1.1573732CrossRefGoogle Scholar
  167. Zhu Z, Lee K, Wang X (2012) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4V. Int J Adv Manuf Technol 59(5–8):569–574.  https://doi.org/10.1007/s00170-011-3534-9CrossRefGoogle Scholar
  168. Zimmermann S, Specht U, Spieß L et al (2012) Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening. Mater Sci Eng A 558(0):755–760.  https://doi.org/10.1016/j.msea.2012.08.101CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BIAS—Bremer Institut für angewandte Strahltechnik GmbHBremenGermany

Personalised recommendations