Timoshenko Beams

  • Andreas ÖchsnerEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter covers the continuum mechanical description of beam members under the additional influence of shear stresses. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law and the equilibrium equation, the partial differential equations, which describe the physical problem, are derived.


  1. 1.
    Bathe K-J (1996) Finite element procedures. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  2. 2.
    Beer FP, Johnston ER Jr, DeWolf JT, Mazurek DF (2009) Mechanics of materials. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33:335–340CrossRefGoogle Scholar
  4. 4.
    Gere JM, Timoshenko SP (1991) Mechanics of materials. PWS-KENT Publishing Company, BostonCrossRefGoogle Scholar
  5. 5.
    Gruttmann F, Wagner W (2001) Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput Mech 27:199–207CrossRefGoogle Scholar
  6. 6.
    Levinson M (1981) A new rectangular beam theory. J Sound Vib 74:81–87ADSCrossRefGoogle Scholar
  7. 7.
    Öchsner A (2014) Elasto-plasticity of frame structure elements: modeling and simulation of rods and beams. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Öchsner A (2016) Continuum damage and fracture mechanics. Springer, SingaporeCrossRefGoogle Scholar
  9. 9.
    Reddy JN (1984) A simple higher-order theory for laminated composite plate. J Appl Mech 51:745–752CrossRefGoogle Scholar
  10. 10.
    Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca RatonzbMATHGoogle Scholar
  11. 11.
    Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Method Appl M 149:113–132CrossRefGoogle Scholar
  12. 12.
    Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41:744–746CrossRefGoogle Scholar
  13. 13.
    Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag 43:125–131CrossRefGoogle Scholar
  14. 14.
    Timoshenko S (1940) Strength of materials - part I elementary theory and problems. D. Van Nostrand Company, New YorkzbMATHGoogle Scholar
  15. 15.
    Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New YorkzbMATHGoogle Scholar
  16. 16.
    Twiss RJ, Moores EM (1992) Structural geology. WH Freeman & Co, New YorkGoogle Scholar
  17. 17.
    Weaver W Jr, Gere JM (1980) Matrix analysis of framed structures. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  18. 18.
    Winkler E (1867) Die Lehre von der Elasticität und Festigkeit mit besonderer Rücksicht auf ihre Anwendung in der Technik. H. Dominicus, PragzbMATHGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany

Personalised recommendations