Advertisement

Euler–Bernoulli Beams

  • Andreas ÖchsnerEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter covers the continuum mechanical description of thin beam members. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law and the equilibrium equation, the partial differential equation, which describes the physical problem, is derived.

References

  1. 1.
    Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke: Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Boresi AP, Schmidt RJ (2003) Advanced mechanics of materials. Wiley, New YorkGoogle Scholar
  3. 3.
    Budynas RG (1999) Advanced strength and applied stress analysis. McGraw-Hill Book, SingaporeGoogle Scholar
  4. 4.
    Gould PL (1988) Analysis of shells and plates. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Gross D, Hauger W, Schröder J, Wall WA (2009) Technische Mechanik 2: Elastostatik. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Hartmann F, Katz C (2007) Structural analysis with finite elements. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Heyman J (1998) Structural analysis: a historical approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Hibbeler RC (2008) Mechanics of materials. Prentice Hall, SingaporeGoogle Scholar
  9. 9.
    Öchsner A (2014) Elasto-plasticity of frame structure elements: modeling and simulation of rods and beams. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Szabó I (2003) Einführung in die Technische Mechanik: Nach Vorlesungen István Szabó. Springer, BerlinzbMATHGoogle Scholar
  11. 11.
    Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  12. 12.
    Winkler E (1867) Die Lehre von der Elasticität und Festigkeit mit besonderer Rücksicht auf ihre Anwendung in der Technik. H. Dominicus, PragzbMATHGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany

Personalised recommendations