Advertisement

Optimising Pump Scheduling for Water Distribution Networks

  • Yanchang ZhaoEmail author
  • Bin Liang
  • Yang Wang
  • Shaobo Dang
  • Ronnie Taib
  • Fang Chen
  • Tin Hua
  • Dammika Vitanage
  • Corinna Doolan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11919)

Abstract

Energy costs can be a major component of operational costs for water utilities. Operational efficiencies including optimising energy costs while maintaining continuity of supply is one area to reduce overall operational costs. To address the challenge, we have proposed an effective optimisation model to minimise the energy cost for water distribution networks. A simulation of the model over a water distribution network in Sydney demonstrated that 15% saving in energy cost could be achieved using this approach, as compared with the existing rule-based method.

Keywords

Optimisation Pump scheduling Water distribution networks 

Notes

Acknowledgement

We’d like to thank the Sydney Water Corporation for partially funding this research and also for providing data and domain knowledge.

References

  1. 1.
    Castro-Gama, M., Pan, Q., Lanfranchi, E.A., Jonoski, A., Solomatine, D.P.: Pumpscheduling for a large water distribution network. Proc. Eng. 186, 436–443 (2017). XVIII International Conference on WaterDistribution Systems, WDSA2016, Milan, ItalyCrossRefGoogle Scholar
  2. 2.
    Garg, V.K., Jayram, T.S., Narayanaswamy, B.: Online optimization with dynamic temporal uncertainty: incorporating short term predictions for renewable integration in intelligent energy systems (2013)Google Scholar
  3. 3.
    Kim, V.: lpsymphony: symphony integer linear programming solver in R (2018). https://projects.coin-or.org/SYMPHONY
  4. 4.
    Kurian, V., Narasimhan, S., Narasimhan, S.: Optimal scheduling of rural water supply schemes. IFAC-PapersOnLine 51(1), 142–147 (2018). 5th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2018. http://www.sciencedirect.com/science/article/pii/S2405896318301848CrossRefGoogle Scholar
  5. 5.
    Li, Z., et al.: Intelligent network optimisation research project - final report. Technical report, Data61, CSIRO, December 2018Google Scholar
  6. 6.
    Napolitano, J., Sechi, G., Zuddas, P.: Scenario analysis for optimization of pumping schedules in complex water supply systems considering a cost-risk balancing problem. Proc. Eng. 89, 565–572 (2014).  https://doi.org/10.1016/j.proeng.2014.11.479CrossRefGoogle Scholar
  7. 7.
    R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/
  8. 8.
    Ralphs, T., Mahajan, A., Vigerske, S., mgalati13, jpfasano, Bulut, A., anhhz: coin-or/SYMPHONY: version 5.6.16 January 2017.  https://doi.org/10.5281/zenodo.248734
  9. 9.
    Urgaonkar, R., Urgaonkar, B., Neely, M.J., Sivasubramaniam, A.: Optimal power cost management using stored energy in data centers. In: Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2011, pp. 221–232. ACM, New York (2011).  https://doi.org/10.1145/1993744.1993766
  10. 10.
    Waterworth, G., Darbyshire, K.: Comparison of methods of pump scheduling in water supply systems. In: The European Simulation and Modelling Conference, ESM2001, ENGIN-28, June 2001. http://eprints.leedsbeckett.ac.uk/775/
  11. 11.
    Zhao, Y., et al.: An application of energy saving optimisation to water distribution networks. In: OzWater 2019, 7–9 May 2019, Melbourne. Australian Water Association, May 2019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yanchang Zhao
    • 1
    Email author
  • Bin Liang
    • 2
  • Yang Wang
    • 2
  • Shaobo Dang
    • 4
  • Ronnie Taib
    • 4
  • Fang Chen
    • 2
  • Tin Hua
    • 3
  • Dammika Vitanage
    • 3
  • Corinna Doolan
    • 3
  1. 1.Data61CSIROCanberraAustralia
  2. 2.University of TechnologySydneyAustralia
  3. 3.Sydney Water CorporationSydneyAustralia
  4. 4.Data61CSIROSydneyAustralia

Personalised recommendations