An Efficient Solver for Parametrized Difference Revision

  • Aaron HunterEmail author
  • John Agapeyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11919)


We present GenC, an efficient and highly-parallel belief revision solver for paramatrized difference operators. GenC uses an AllSAT solver to enumerate the possible models of a formula, and then determines the output of revision through a series of bit comparisons. The result is a system that can calculate the result of revision for formulas with 100 variables and millions of clauses in just seconds; the running times obtained by GenC far surpass existing solvers for belief revision. The system also has many features that are useful for practical problems: it supports both interactive and offline data entry, it allows multiple formats for entering formulas, and it provides output in human-readable format. Most importantly, GenC is able to model revision by any parametrized difference operator, which allows a wide range of practical problems to be easily captured.


  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet functions for contraction and revision. J. Symb. Logic 50(2), 510–530 (1985)CrossRefGoogle Scholar
  2. 2.
    Aravanis, T., Peppas, P.: Belief revision in answer set programming. In: Proceedings of the 21st Panhellenic Conference on Informatics (PCI 2017) (2017)Google Scholar
  3. 3.
    Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 475–479 (1988)Google Scholar
  4. 4.
    Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: a consistency-based belief change system. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 78–90. Springer, Heidelberg (2007). Scholar
  5. 5.
    Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates and counterfactuals. Artif. Intell. 57(2–3), 227–270 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hoos, H., Stützle, T.: SATLIB: an online resource for research on SAT. In: SAT 2000, pp. 283–292 (2000)Google Scholar
  7. 7.
    Hunter, A., Tsang, E.: GenB: a general solver for AGM revision. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 564–569. Springer, Cham (2016). Scholar
  8. 8.
    Hunter, A.: Learning belief revision operators. In: Proceedings of the Canadian Conference on Artificial Intelligence, pp. 239–245 (2018)CrossRefGoogle Scholar
  9. 9.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52(2), 263–294 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Peppas, P., Williams, M.-A.: Kinetic consistency and relevance in belief revision. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 401–414. Springer, Cham (2016). Scholar
  11. 11.
    Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM J. Exp. Algorithmics 21(1), 1.12:1–1.12:44 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Toda, T., Tsuda, K.: BDD construction for all solutions SAT and efficient caching mechanism. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 1880–1886 (2015)Google Scholar
  13. 13.
    Williams, M.-A.: Applications of belief revision. In: Freitag, B., Decker, H., Kifer, M., Voronkov, A. (eds.) DYNAMICS 1997. LNCS, vol. 1472, pp. 287–316. Springer, Heidelberg (1998). CrossRefGoogle Scholar
  14. 14.
    Zhuang, Z., Wang, Z., Wang, K., Qi, G.: DL-lite contraction and revision. J. Artif. Intell. Res. (JAIR) 56, 329–378 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BC Institute of TechnologyBurnabyCanada

Personalised recommendations