Advertisement

Constructing CP-Nets from Users Past Selection

  • Reza KhoshkanginiEmail author
  • Maria Silvia Pini
  • Francesca Rossi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11919)

Abstract

Although recommender systems have been significantly developed for providing customized services to users in various domains, they still have some limitations regarding the extraction of users’ conditional preferences from their past selections when they are in a dynamic context. We propose a framework to automatically extract and learn users’ conditional and qualitative preferences in a gamified system taking into consideration the players’ past behaviour, without asking any information from the players. To do that, we construct CP-nets modeling users preferences via a procedure that employs multiple Information Criterion score functions within an heuristic algorithm to learn a Bayesian network. The approach has been validated experimentally in the challenge recommendation domain in an urban mobility gamified system.

Keywords

CP-net Bayesian network Recommender system Gamification 

References

  1. 1.
    Amatriain, X., Basilico, J.: Past, present, and future of recommender systems: an industry perspective. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 211–214. ACM, New York (2016)Google Scholar
  2. 2.
    Bigot, D., Mengin, J., Zanuttini, B.: Learning probabilistic CP-nets from observations of optimal items. In: STAIRS, pp. 81–90 (2014)Google Scholar
  3. 3.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Int. Res. 21(1), 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brun, Y., et al.: A design space for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 33–50. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35813-5_2CrossRefGoogle Scholar
  5. 5.
    Carvalho, A.M.: Scoring functions for learning Bayesian networks. INESC-ID, Technical report (2009)Google Scholar
  6. 6.
    Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J., Zanuttini, B.: Learning ordinal preferences on multiattribute domains: the case of CP-nets. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 273–296. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14125-6_13CrossRefzbMATHGoogle Scholar
  7. 7.
    Coelho, H., et al.: An efficient procedure for collective decision-making with CP-nets. In: ECAI 2010: 19th European Conference on Artificial Intelligence, vol. 215, p. 375 (2010)Google Scholar
  8. 8.
    Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Dynamic and probabilistic CP-nets. In: MPREF 2013 (2013)Google Scholar
  9. 9.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  10. 10.
    Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guerin, J.T., Allen, T.E., Goldsmith, J.: Learning CP-net preferences online from user queries. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 208–220. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41575-3_16CrossRefGoogle Scholar
  12. 12.
    Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)Google Scholar
  13. 13.
    Khoshkangini, R., Pini, M.S., Rossi, F.: A design of context-aware framework for conditional preferences of group of users. In: Lee, R. (ed.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SCI, vol. 653, pp. 97–112. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-33810-1_8CrossRefGoogle Scholar
  14. 14.
    Khoshkangini, R., Pini, M.S., Rossi, F.: A self-adaptive context-aware group recommender system. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 250–265. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_19CrossRefGoogle Scholar
  15. 15.
    Khoshkangini, R., Valetto, G., Marconi, A.: Generating personalized challenges to enhance the persuasive power of gamification. In: Personalization in Persuasive Technology Workshop (2017)Google Scholar
  16. 16.
    Khoshkangini, R., Valetto, G., Marconi, A.: Automatic generation and recommendation of personalized challenges for gamification. In: User Modeling and User-Adapted Interaction (UMUAI) (2019, under review)Google Scholar
  17. 17.
    Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artif. Intell. 174(11), 685–703 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kursa, M.B., Rudnicki, W.R., et al.: Feature selection with the boruta package. J. Stat. Softw. 36(11), 1–13 (2010)CrossRefGoogle Scholar
  19. 19.
    Lee, C., Lee, G.G.: Information gain and divergence-based feature selection for machine learning-based text categorization. Inf. Process. Manag. 42(1), 155–165 (2006)CrossRefGoogle Scholar
  20. 20.
    Lessel, P., Altmeyer, M., Krüger, A.: Analysis of recycling capabilities of individuals and crowds to encourage and educate people to separate their garbage playfully. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015 (2015)Google Scholar
  21. 21.
    Liu, Z., Malone, B., Yuan, C.: Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinform. 13(15), S14 (2012)CrossRefGoogle Scholar
  22. 22.
    Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: a survey. IEEE Trans. Comput. Intell. AI Games 3(2), 85–99 (2011)CrossRefGoogle Scholar
  23. 23.
    Marchetti-Spaccamela, A., Vitaletti, A., Becchetti, L., Colesanti, U.: Self-adaptive recommendation systems: models and experimental analysis. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2008)Google Scholar
  24. 24.
    Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, New York (2012).  https://doi.org/10.1007/978-1-4612-0745-0CrossRefzbMATHGoogle Scholar
  25. 25.
    Ono, C., Kurokawa, M., Motomura, Y., Asoh, H.: A context-aware movie preference model using a Bayesian network for recommendation and promotion. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 247–257. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73078-1_28CrossRefGoogle Scholar
  26. 26.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach Author (2009)Google Scholar
  27. 27.
    Yamaoka, K., Nakagawa, T., Uno, T.: Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6(2), 165–175 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Reza Khoshkangini
    • 1
    Email author
  • Maria Silvia Pini
    • 2
  • Francesca Rossi
    • 3
  1. 1.Center for Applied Intelligent Systems Research (CAISR)Halmstad UniversityHalmstadSweden
  2. 2.Department of Information EngineeringUniversity of PadovaPaduaItaly
  3. 3.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations