Advertisement

Z-number Based Fuzzy System for Control of Omnidirectional Robot

  • Rahib H. AbiyevEmail author
  • Irfan Günsel
  • Nurullah Akkaya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1095)

Abstract

This paper presents the development of a fuzzy inference system using Z-number for omnidirectional robot control. The fuzzy inference system is constructed for control of the linear and angular speed of the robot. For this aim, using expert knowledge the fuzzy Z-rules are designed for robot-soccer control. Using the designed rule base and interpolative reasoning the development of the fuzzy control system based on Z-number is carried out. The simulation of developed fuzzy control algorithm based on Z-number has shown satisfactory results at runtime. The experimental results demonstrate the efficiency of using a Z-number in the design of control system.

Keywords

Omnidirectional robot Z-number Fuzzy control Z-rules 

References

  1. 1.
    Liu, Y., Zhu, J., Williams II, R.L., Wu, J.: Omni-directional mobile robot controller based on trajectory linearization. Robot. Auton. Syst. 56, 461–479 (2008)CrossRefGoogle Scholar
  2. 2.
    Watanabe, K., Shiraishi, Y., Tzafestas, S.G., Tang, J., Fukuda, T.: Feedback control of an omnidirectional autonomous platform for mobile service robots. J. Intell. Robot. Syst. 22(3–4), 315–330 (1998)CrossRefGoogle Scholar
  3. 3.
    Abiyev, R.H., Akkaya, N., Aytac, E., Ibrahim, D.: Behaviour tree based control for efficient navigation of holonomic robots. Int. J. Robot. Autom. 29(1), 44–57 (2014)Google Scholar
  4. 4.
    Hashemi, E., Ghaffari, J.M., Ghaffari, J.N.: Model-based PI–fuzzy control of four-wheeled omni-directional mobile robots. Robot. Auton. Syst. 59, 930–942 (2011)CrossRefGoogle Scholar
  5. 5.
    Masmoudi, M.S., Krichen, N., Masmoudi, M., Derbe, N.: Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 49, 901–919 (2016)CrossRefGoogle Scholar
  6. 6.
    Bugeja, M.K., Fabri, S.G., Camilleri, L.: Dual adaptive dynamic control of mobile robots using neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(1), 129–141 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, C.P., Liu, Y.J., Wen, G.X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 986–993 (2014)Google Scholar
  8. 8.
    Byrnes, C.I., Isidori, A.: Output regulation for nonlinear systems: an overview. Int. J. Robust Nonlinear Control 10(5), 323–337 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chang, Y.-H., Chang, C.-W., Chen, C.-L., Tao, C.-W.: Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 444–457 (2012)CrossRefGoogle Scholar
  10. 10.
    Abiyev, R.H., Akkaya, N., Aytac, E.: Navigation of mobile robot in dynamic environments, In: Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE), vol. 3, pp. 480–484. IEEE, Zhangjiajie (2012)Google Scholar
  11. 11.
    Abiyev, R.H., Günsel, I., Akkaya, N., Aytac, E., Çağman, A., Abizada, S.: Robot soccer control using behaviour trees and fuzzy logic. In: ICAFS 2016. Procedia Computer Science, vol. 102, pp. 477–484 (2016)CrossRefGoogle Scholar
  12. 12.
    Park, S., Ryoo, Y.-J., Im, D.-Y.: Fuzzy steering control of three-wheels based omnidirectional mobile robot. In: Proceedings of International Conference on Fuzzy Theory and Its Applications. IEEE, Taichung (2016)Google Scholar
  13. 13.
    Abiyev, R.H., Günsel, I., Akkaya, N., Aytac, E., Çağman, A., Abizada, S.: Fuzzy control of omnidirectional robot. In: ICSCCW 2017. Procedia Computer Science, vol. 120, pp. 608–616 (2017)CrossRefGoogle Scholar
  14. 14.
    Zadeh, L.A.: A note on a Z-number. Inf. Sci. 181(14), 2923–2932 (2011)CrossRefGoogle Scholar
  15. 15.
    Aliev, R.A., Huseynov, O.H., Aliyev, R.R., Alizadeh, A.V.: The Arithmetic on Z-numbers. Theory and Application, 316 p. World Scientific Publishing (2015)Google Scholar
  16. 16.
    Aliev, R.A., Pedrycz, W., Huseynov, O.H., Eyupoglu, S.Z.: Approximate reasoning on a basis of Z-number valued If-Then rules. IEEE Trans. Fuzzy Syst. 25(6), 1589–1600 (2017)CrossRefGoogle Scholar
  17. 17.
    Kang, B., Wei, D., Li, Y., Deng, Y.: Decision making using z-numbers under uncertain environment. J. Comput. Inf. Syst. 8(7), 2807–2814 (2012)Google Scholar
  18. 18.
    Abiyev, R.H., Uyar, K., Ilhan, U., Imanov, E., Abiyeva, E.: Estimation of food security risk level using Z-number based fuzzy system. J. Food Qual. 2018, 1–9 (2018)CrossRefGoogle Scholar
  19. 19.
    Abiyev, R.H.: Z-number based fuzzy inference system for dynamic plant control. Adv. Fuzzy Syst. 2016, 1–9 (2016).  https://doi.org/10.1155/2016/8950582CrossRefzbMATHGoogle Scholar
  20. 20.
    Abiyev, R.H., Akkaya, N., Gunsel, I.: Control of omnidirectional robot using Z-number-based fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 49(1), 238–252 (2019).  https://doi.org/10.1109/tsmc.2018.2834728CrossRefGoogle Scholar
  21. 21.
    Koczy, L.T., Hirota, K.: Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Inf. Sci. 71(1), 169–201 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Applied Artificial Intelligence Research CentreNear East UniversityNicosiaTurkey

Personalised recommendations