TSRuleGrowth: Mining Partially-Ordered Prediction Rules From a Time Series of Discrete Elements, Application to a Context of Ambient Intelligence

  • Benoit VuilleminEmail author
  • Lionel Delphin-Poulat
  • Rozenn Nicol
  • Laetitia Matignon
  • Salima Hassas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)


This paper presents TSRuleGrowth, an algorithm for mining partially-ordered rules on a time series. TSRuleGrowth takes principles from the state of the art of transactional rule mining, and applies them to time series. It proposes a new definition of the support, which overcomes the limitations of previous definitions. Experiments on two databases of real data coming from connected environments show that this algorithm extracts relevant usual situations and outperforms the state of the art.


Rule mining Ambient intelligence Habits Automation Support Time series 


  1. 1.
    Ahn, K.I., Kim, J.Y.: Efficient mining of frequent itemsets and a measure of interest for association rule mining. J. Inf. Knowl. Manage. 03(03), 245–257 (2004). Scholar
  2. 2.
    Augusto, J.C., McCullagh, P.: Ambient intelligence: concepts and applications. Comput. Sci. Inf. Syst. 4(1), 1–27 (2007)CrossRefGoogle Scholar
  3. 3.
    Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association rules. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 510–517. Springer, Heidelberg (2007). Scholar
  4. 4.
    Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily activities in an instrumented home. In: 11th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAm I), November 2017CrossRefGoogle Scholar
  5. 5.
    Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD 1998, pp. 16–22. AAAI Press (1998)Google Scholar
  6. 6.
    Deogun, J., Jiang, L.: Prediction mining – an approach to mining association rules for prediction. In: Ślęzak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 98–108. Springer, Heidelberg (2005). Scholar
  7. 7.
    Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V.S.: ERMiner: sequential rule mining using equivalence classes. In: Blockeel, H., van Leeuwen, M., Vinciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 108–119. Springer, Cham (2014). Scholar
  8. 8.
    Fournier-Viger, P., Wu, C.W., Tseng, V.S., Cao, L., Nkambou, R.: Mining partially-ordered sequential rules common to multiple sequences. IEEE Trans. Knowl. Data Eng. 27(8), 2203–2216 (2015). Scholar
  9. 9.
    Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N.: The ContextAct@A4H real-life dataset of daily-living activities. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp. 175–188. Springer, Cham (2017). Scholar
  10. 10.
    Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997). Scholar
  11. 11.
    Schlüter, T., Conrad, S.: About the analysis of time series with temporal association rule mining. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 325–332, April 2011.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benoit Vuillemin
    • 1
    • 2
    Email author
  • Lionel Delphin-Poulat
    • 1
  • Rozenn Nicol
    • 1
  • Laetitia Matignon
    • 2
  • Salima Hassas
    • 2
  1. 1.Orange LabsLannionFrance
  2. 2.Univ Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205LyonFrance

Personalised recommendations