Advertisement

COEA: An Efficient Method for Entity Alignment in Online Encyclopedias

  • Yimin Lv
  • Xin WangEmail author
  • Runpu Yue
  • Fuchuan Tang
  • Xue Xiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)

Abstract

Knowledge graph is the cornerstone of artificial intelligence. Entity alignment in multi-source online encyclopedias is an important part of data integration to construct the knowledge graph. In order to solve the problem that traditional methods are not effective enough for entity alignment in online encyclopedias tasks, this paper proposes the Chinese Online Encyclopedia Aligner (COEA) based on the combination of entity attributes and context. In this paper, we focus on (1) extracting attribute information and context of entities from the infobox of online encyclopedias and normalizing them, (2) computing the similarity of entity attributes based on Vector Space Model, and (3) further considering the entity similarity based on the topic model over entity context when the similarity of attributes is between the lower bound and the upper bound. Finally, data sets of entity alignment in online encyclopedias are constructed for simulation experiments. The experimental results, which show the method proposed in this paper outperforms traditional entity alignment algorithms, verify that our method can significantly improve the performance of entity alignment in online encyclopedias in the construction of Chinese knowledge graphs.

Keywords

Entity alignment Online encyclopedias Vector Space Model Topic model Knowledge graph 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61572353), the Natural Science Foundation of Tianjin (17JCYBJC15400), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (201910056374).

References

  1. 1.
    Antoniou, G., Van Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 67–92. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  3. 3.
    Biega, J., Kuzey, E., Suchanek, F.M.: Inside YAGO2s: a transparent information extraction architecture. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 325–328. ACM (2013)Google Scholar
  4. 4.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)zbMATHGoogle Scholar
  5. 5.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: FreeBase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of data, pp. 1247–1250. ACM (2008)Google Scholar
  6. 6.
    Griffiths, T.: Gibbs sampling in the generative model of latent Dirichlet allocation (2002)Google Scholar
  7. 7.
    Hai-hua, Z.X.h.J., Rui-hua, D.: Property weight based co-reference resolution for linked data. Comput. Sci. 40(2), 11 (2013) Google Scholar
  8. 8.
    Baidu Baike Homepage: Line spacing in latex documents. http://baike.baidu.com. Accessed 9 July 2019
  9. 9.
    Hudong Baike Homepage: Line spacing in latex documents. http://www.hudong.com. Accessed 6 July 2019
  10. 10.
    LNCS Homepage: Line spacing in latex documents. http://cnschema.org. Accessed 5 July 2019
  11. 11.
    Huang, J., Li, T., Jia, Z., Jing, Y., Zhang, T.: Entity alignment of Chinese heterogeneous encyclopedia knowledge base. Comput. Appl. 36(7), 1881–1886 (2016)Google Scholar
  12. 12.
    Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015)Google Scholar
  13. 13.
    Leuf, B.: The Wiki way: collaboration and sharing on the internet. History 1060, 12 (2001)Google Scholar
  14. 14.
    Mori, J., Tsujishita, T., Matsuo, Y., Ishizuka, M.: Extracting relations in social networks from the web using similarity between collective contexts. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 487–500. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_35CrossRefGoogle Scholar
  15. 15.
    Nov, O.: What motivates wikipedians? Commun. ACM 50(11), 60–64 (2007)CrossRefGoogle Scholar
  16. 16.
    Sheth, A., Thirunarayan, K.: Semantics empowered Web 3.0 managing enterprise, social, sensor, and cloud-based data and services for advanced applications. Synth. Lect. Data Manag. 4(6), 1–175 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph. In: International Semantic Web Conference (Posters & Demos), vol. 1035, pp. 121–124 (2013)Google Scholar
  18. 18.
    Yan, Z., Guoliang, L., Jianhua, F.: A survey on entity alignment of knowledge base. J. Comput. Res. Dev. 1, 165–192 (2016)Google Scholar
  19. 19.
    Zheng, J., Mao, Y., Dong, Q.: Department of automation, Tsinghua University Beijing 100084; word sense tagging method based on context. J. Chin. Inf. Process. 5 (2000)Google Scholar
  20. 20.
    Zheng, Z., Si, X., Li, F., Chang, E.Y., Zhu, X.: Entity disambiguation with FreeBase. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 82–89. IEEE Computer Society (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yimin Lv
    • 1
  • Xin Wang
    • 1
    • 2
    Email author
  • Runpu Yue
    • 1
  • Fuchuan Tang
    • 1
  • Xue Xiang
    • 1
  1. 1.College of Intelligence and ComputingTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Cognitive Computing and ApplicationTianjinChina

Personalised recommendations