Tourist’s Tour Prediction by Sequential Data Mining Approach

  • Lilia Ben BaccarEmail author
  • Sonia DjebaliEmail author
  • Guillaume GuérardEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)


This paper answers the problem of predicting future behaviour tourist based on past behaviour of an individual tourist. The individual behaviour is naturally an indicator of the behaviour of other tourists. The prediction of tourists movement has a crucial role in tourism marketing to create demand and assist tourists in decision-making. With advances in information and communication technology, social media platforms generate data from millions of people from different countries during their travel. The main objective of this paper is to consider sequential data-mining methods to predict tourist movement based on Instagram data. Rules emerge from those ones are exploited to predict future behaviors. The originality of this approach is a combination between pattern mining to reduce the size of data and the automata to condense the rules. The capital city of France, Paris is selected to demonstrate the utility of the proposed methodology.


Sequential pattern mining Sequential rule mining Sequence prediction Big data Social network Tourism 


  1. 1.
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 429–435. ACM (2002)Google Scholar
  2. 2.
    Chalfen, R.M.: Photograph’s role in tourism: some unexplored relationships. Ann. Tourism Res. 6(4), 435–447 (1979)CrossRefGoogle Scholar
  3. 3.
    Chareyron, G., Cousin, S., Da-Rugna, J., Gabay, D.: Touriscope: map the world using geolocated photographies. In: IGU Meeting, Geography of Tourism, Leisure and Global Change (2009)Google Scholar
  4. 4.
    Chareyron, G., Da-Rugna, J., Raimbault, T.: Big data: a new challenge for tourism. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 5–7. IEEE (2014)Google Scholar
  5. 5.
    Cooper, C., Michael Hall, C.: Contemporary Tourism. Routledge (2007)Google Scholar
  6. 6.
    Da Rugna, J., Chareyron, G., Branchet, B.: Tourist behavior analysis through geotagged photographies: a method to identify the country of origin. In: 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 347–351. IEEE (2012)Google Scholar
  7. 7.
    Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R.: TKS: efficient mining of Top-K sequential patterns. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8346, pp. 109–120. Springer, Heidelberg (2013). Scholar
  8. 8.
    Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V.S.: ERMiner: sequential rule mining using equivalence classes. In: Blockeel, H., van Leeuwen, M., Vinciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 108–119. Springer, Cham (2014). Scholar
  9. 9.
    Fournier-Viger, P., Chun-Wei Lin, J., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)Google Scholar
  10. 10.
    Fournier-Viger, P., Nkambou, R., Shin-Mu Tseng, V.: RuleGrowth: mining sequential rules common to several sequences by pattern-growth. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 956–961. ACM (2011)Google Scholar
  11. 11.
    Fournier-Viger, P., Tseng, V.S.: TNS: mining top-k non-redundant sequential rules. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 164–166. ACM (2013)Google Scholar
  12. 12.
    Fei, H., Li, Z., Yang, C., Jiang, Y.: A graph-based approach to detecting tourist movement patterns using social media data. Cartography Geograph. Inf. Sci. 46(4), 368–382 (2019)CrossRefGoogle Scholar
  13. 13.
    Li, J., Lizhi, X., Tang, L., Wang, S., Li, L.: Big data in tourism research: a literature review. Tour. Manag. 68, 301–323 (2018)CrossRefGoogle Scholar
  14. 14.
    March, R., Woodside, A.G.: Tourism Behaviour: Travellers’ Decisions and Actions. CABI, Wallingford (2005)CrossRefGoogle Scholar
  15. 15.
    Pei, J., et al.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  16. 16.
    Soulet, A.: Two decades of pattern mining: principles and methods. In: Marcel, P., Zimányi, E. (eds.) eBISS 2016. LNBIP, vol. 280, pp. 59–78. Springer, Cham (2017). Scholar
  17. 17.
    Talpur, A., Zhang, Y.: A study of tourist sequential activity patterns through location based social network (LBSN). arXiv preprint arXiv:1811.03426 (2018)
  18. 18.
    Versichele, M., De Groote, L., Bouuaert, M.C., Neutens, T., Moerman, I., Van de Weghe, N.: Pattern mining in tourist attraction visits through association rule learning on bluetooth tracking data: a case study of Ghent. Belgium. Tourism Manage. 44, 67–81 (2014)CrossRefGoogle Scholar
  19. 19.
    Yang, L., Lun, W., Liu, Y., Kang, C.: Quantifying tourist behavior patterns by travel motifs and geo-tagged photos from flickr. ISPRS Int. J. Geo-Inf. 6(11), 345 (2017)CrossRefGoogle Scholar
  20. 20.
    Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)CrossRefGoogle Scholar
  21. 21.
    Zhao, Q., Bhowmick, S.S.: Sequential pattern mining: a survey. ITechnical Report CAIS Nayang Technological University Singapore, 1:26 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.De Vinci Research CenterPôle Universitaire Léonard De VinciParis – La DéfenseFrance

Personalised recommendations