RecKGC: Integrating Recommendation with Knowledge Graph Completion

  • Jingwei MaEmail author
  • Mingyang Zhong
  • Jiahui Wen
  • Weitong Chen
  • Xiaofang Zhou
  • Xue Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)


Both recommender systems and knowledge graphs can provide overall and detailed views on datasets, and each of them has been a hot research domain by itself. However, recommending items with a pre-constructed knowledge graph or without one often limits the recommendation performance. Similarly, constructing and completing a knowledge graph without a target is insufficient for applications, such as recommendation. In this paper, we address the problems of recommendation together with knowledge graph completion by a novel model named RecKGC that generates a completed knowledge graph and recommends items for users simultaneously. Comprehensive representations of users, items and interactions/relations are learned in each respective domain, such as our attentive embeddings that integrate tuples in a knowledge graph for recommendation and our high-level interaction representations of entities and relations for knowledge graph completion. We join the tasks of recommendation and knowledge graph completion by sharing the comprehensive representations. As a result, the performance of recommendation and knowledge graph completion are mutually enhanced, which means that the recommendation is getting more effective while the knowledge graph is getting more informative. Experiments validate the effectiveness of the proposed model on both tasks.


Big data Visualization Information retrieval 


  1. 1.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)Google Scholar
  2. 2.
    Cao, Y., Huang, L., Ji, H., Chen, X., Li, J.: Bridge text and knowledge by learning multi-prototype entity mention embedding. In: Proceedings of ACL, vol. 1, pp. 1623–1633 (2017)Google Scholar
  3. 3.
    Cheng, W., Shen, Y., Zhu, Y., Huang, L.: Delf: a dual-embedding based deep latent factor model for recommendation. In: Proceedings of IJCAI, pp. 3329–3335 (2018)Google Scholar
  4. 4.
    Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of SIGKDD (2014)Google Scholar
  5. 5.
    Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of WWW, pp. 278–288 (2015)Google Scholar
  6. 6.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of AIStats, pp. 315–323 (2011)Google Scholar
  7. 7.
    Guan, S., Jin, X., Wang, Y., Cheng, X.: Shared embedding based neural networks for knowledge graph completion. In: Proceedings of CIKM, pp. 247–256 (2018)Google Scholar
  8. 8.
    He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: Proceedings of WWW, pp. 173–182 (2017)Google Scholar
  9. 9.
    He, X., Chen, T., Kan, M.Y., Chen, X.: Trirank: review-aware explainable recommendation by modeling aspects. In: Proceedings of CIKM, pp. 1661–1670 (2015)Google Scholar
  10. 10.
    Hu, L., Jian, S., Cao, L., Chen, Q.: Interpretable recommendation via attraction modeling: learning multilevel attractiveness over multimodal movie contents. In: Proceedings of IJCAI, pp. 3400–3406 (2018)Google Scholar
  11. 11.
    Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston, MA (2015). Scholar
  12. 12.
    Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over knowledge graphs on word and character level. In: Proceedings of WWW, pp. 1211–1220 (2017)Google Scholar
  13. 13.
    Ma, J., Li, G., Zhong, M., Zhao, X., Zhu, L., Li, X.: LGA: latent genre aware micro-video recommendation on social media. Multimedia Tools Appl. 77(3), 2991–3008 (2018)CrossRefGoogle Scholar
  14. 14.
    Ma, J., Wen, J., Zhong, M., Chen, W., Zhou, X., Indulska, J.: Multi-source multi-net micro-video recommendation with hidden item category discovery. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 384–400. Springer, Cham (2019). Scholar
  15. 15.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS (2013)Google Scholar
  16. 16.
    Min, B., Grishman, R., Wan, L., Wang, C., Gondek, D.: Distant supervision for relation extraction with an incomplete knowledge base. In: Proceedings of NAACL-HLT, pp. 777–782 (2013)Google Scholar
  17. 17.
    Nickel, M., Rosasco, L., Poggio, T., et al.: Holographic embeddings of knowledge graphs. In: Proceedings of AAAI, vol. 2, pp. 3–2 (2016)Google Scholar
  18. 18.
    Oh, B., Seo, S., Lee, K.H.: Knowledge graph completion by context-aware convolutional learning with multi-hop neighborhoods. In: Proceedings of CIKM, pp. 257–266 (2018)Google Scholar
  19. 19.
    Ren, X., et al.: Cotype: joint extraction of typed entities and relations with knowledge bases. In: Proceedings of WWW, pp. 1015–1024 (2017)Google Scholar
  20. 20.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: Proceedings of UAI, pp. 452–461 (2009)Google Scholar
  21. 21.
    Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge graph from electronic medical records. Sci. Rep. 7(1), 5994 (2017)CrossRefGoogle Scholar
  22. 22.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of WWW, pp. 285–295 (2001)Google Scholar
  23. 23.
    Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph completion. In: Proceedings of AAAI (2017)Google Scholar
  24. 24.
    Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: Proceedings of SIGKDD, pp. 1235–1244 (2015)Google Scholar
  25. 25.
    Wang, H., et al.: Ripplenet: propagating user preferences on the knowledge graph for recommender systems. In: Proceedings of CIKM, pp. 417–426 (2018)Google Scholar
  26. 26.
    Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)
  27. 27.
    Yang, C., Bai, L., Zhang, C., Yuan, Q., Han, J.: Bridging collaborative filtering and semi-supervised learning: a neural approach for POI recommendation. In: Proceedings of SIGKDD, pp. 1245–1254 (2017)Google Scholar
  28. 28.
    Yu, X., Ma, H., Hsu, B.J.P., Han, J.: On building entity recommender systems using user click log and freebase knowledge. In: Proceedings of WSDM, pp. 263–272 (2014)Google Scholar
  29. 29.
    Zheng, L., Noroozi, V., Yu, P.: Joint deep modeling of users and items using reviews for recommendation. In: WSDM, pp. 425–434 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jingwei Ma
    • 1
    Email author
  • Mingyang Zhong
    • 2
  • Jiahui Wen
    • 3
  • Weitong Chen
    • 1
  • Xiaofang Zhou
    • 1
  • Xue Li
    • 1
    • 4
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Central Queensland UniversityBrisbaneAustralia
  3. 3.National University of Defense TechnologyChangshaChina
  4. 4.Neusoft Institute of InformationDalianChina

Personalised recommendations