HGTPU-Tree: An Improved Index Supporting Similarity Query of Uncertain Moving Objects for Frequent Updates

  • Mengqian ZhangEmail author
  • Bohan LiEmail author
  • Kai Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)


Position uncertainty is one key feature of moving objects. Existing uncertain moving objects indexing technology aims to improve the efficiency of querying. However, when moving objects’ positions update frequently, the existing methods encounter a high update cost. We purpose an index structure for frequent position updates: HGTPU-tree, which decreases cost caused by frequent position updates of moving objects. HGTPU-tree reduces the number of disk I/Os and update costs by using bottom-up update strategy and reducing same group moving objects updates. Furthermore we purpose moving object group partition algorithm STSG (Spatial Trajectory of Similarity Group) and uncertain moving object similar group update algorithm. Experiments show that HGTPU-tree reduces memory cost and increases system stability compared to existing bottom-up indexes. We compared HGTPU-tree with TPU-tree, GTPU-tree and TPU2M-tree. Results prove that HGTPU-tree is superior to other three state-of-the-art index structures in update cost.


Position uncertainty Moving objects HGTPU-tree Group partition Update cost 


  1. 1.
    Li, J., Wang, B., Wang, G., et al.: A survey of query processing techniques over uncertain mobile objects. J. Front. Comput. Sci. Technol. 7(12), 1057–1072 (2013)Google Scholar
  2. 2.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T.: Indexing the Positions of Continuously Moving Objects. ACM SIGMOD 2000, Dallas, Texas, USA (2000)Google Scholar
  3. 3.
    Li, B., et al.: Algorithm, reverse furthest neighbor querying, of moving objects. In: ADMA 2016, Gold Coast, QLD, Australia, pp. 266–279 (2016)Google Scholar
  4. 4.
    Güting, R.H., Schneider, M.: Moving Objects Databases, pp. 220–268. Elsevier (2005)Google Scholar
  5. 5.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: an optimized spatio-temporal access method for predictive queries. In: VLDB, pp. 790–801 (2003)CrossRefGoogle Scholar
  6. 6.
    Procopiuc, Cecilia M., Agarwal, Pankaj K., Har-Peled, S.: STAR-tree: an efficient self-adjusting index for moving objects. In: Mount, David M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 178–193. Springer, Heidelberg (2002). Scholar
  7. 7.
    Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-based services. In: ICDE, p. 0463 (2002)Google Scholar
  8. 8.
    Fang, Y., Cao, J., Peng, Y., Chen, N., Liu, L.: Efficient indexing of the past, present and future positions of moving objects on road network. In: Gao, Y., Shim, K., Ding, Z., Jin, P., Ren, Z., Xiao, Y., Liu, A., Qiao, S. (eds.) WAIM 2013. LNCS, vol. 7901, pp. 223–235. Springer, Heidelberg (2013). Scholar
  9. 9.
    Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future positions of moving objects. ACM Trans. Database Syst. (TODS) 31(1), 255–298 (2006)CrossRefGoogle Scholar
  10. 10.
    Lee, M.L., Hsu, W., Jensen, C.S., et al.: Supporting frequent updates in R-trees: a bottom-up approach. In: Proceedings of the 29th International Conference on Very large data bases-Volume 29. VLDB Endowment, pp. 608–619 (2003)CrossRefGoogle Scholar
  11. 11.
    Qi, J., Tao, Y., Chang, Y., Zhang, R.: Theoretically optimal and empirically efficient r-trees with strong parallelizability. Proc. VLDB Endowment (PVLDB) 11(5), 621–634 (2018)Google Scholar
  12. 12.
    Tao, Y., Cheng, R., Xiao, X., et al.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proceedings of 31st International Conference, VLDB 2005, pp. 922–933. Morgan Kaufmann Publishers, Inc. (2005)Google Scholar
  13. 13.
    Ding, X., Lu, Y., Pan, P., et al.: U-Tree based indexing method for uncertain moving objects. J. Softw. 19(10), 2696–2705 (2008)CrossRefGoogle Scholar
  14. 14.
    Ding, X.F., Jin, H., Zhao, N.: Indexing of uncertain moving objects with frequent updates. Chin. J. Comput. 35(12), 2587–2597 (2012)CrossRefGoogle Scholar
  15. 15.
    Sadahiro, Y., Lay, R., Kobayashi, T.: Trajectories of moving objects on a network: detection of similarities, visualization of relations, and classification of trajectories. Trans. GIS 17(1), 18–40 (2013)CrossRefGoogle Scholar
  16. 16.
    Ra, M., Lim, C., Song, Y.H., Jung, J., Kim, W.-Y.: Effective trajectory similarity measure for moving objects in real-world scene. In: Kim, Kuinam J. (ed.) Information Science and Applications. LNEE, vol. 339, pp. 641–648. Springer, Heidelberg (2015). Scholar
  17. 17.
    Stamatakos, M., Douzinas, E., Stefanaki, C., et al.: Gastrointestinal stromal tumor. World J. Surg. Oncol. 7(1), 61 (2009)CrossRefGoogle Scholar
  18. 18.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the KDD, pp. 316–324 (2011)Google Scholar
  19. 19.
    Yuan, J., et al.: T-drive: Driving directions based on taxi trajectories. In: Proceedings of the GIS, pp. 99–108 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjingChina
  3. 3.Jiangsu Easymap Geographic Information Technology Corp, LtdYangzhouChina

Personalised recommendations