Advertisement

Food Gases in the Industry: Chemical and Physical Features

  • Pasqualina Laganà
  • Giovanni Campanella
  • Paolo Patanè
  • Maria Assunta Cava
  • Salvatore Parisi
  • Maria Elsa Gambuzza
  • Santi Delia
  • Maria Anna Coniglio
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Gases intended for food-related applications are ‘volatile’ agents. Each food gas has to be produced by authorised companies which should be registered as food business operator in the European Union. As a result, gases intended for food-related applications need to be specifically traceable, similarly to food components. Moreover, the safe use (and related health consequences) of gaseous products and mixtures have to be shared between the final user and all other interested ‘stakeholders’ of the food chain (also with reference to possible food fraud episodes). In addition, the possible mixing of different food gases does not constitute reason for diminishing regulatory and legal responsibilities. With concern to physical and chemical features, and according to the main regulatory document ruling food gases in the European Union, food gases may be subdivided as foaming agents, packaging gases, propellants, or raising substances, although another classification may consider their physical and chemical features when used. This chapter discusses chemical and physical features of commonly used food gases in the food and food packing industries.

Keywords

Carbon dioxide Foaming agent Flammable gas Hydrogen Inert gas Nitrogen Oxygen 

Abbreviations

Ar

Argon

CO2

Carbon dioxide

CO

Carbon monoxide

EFSA

European food safety authority

EU

European Union

FBO

Food business operator

FG

Food gas

HACCP

Hazard analysis and critical control points

H2

Hydrogen

MAP

Modified atmosphere packaging

N2

Nitrogen

O2

Oxygen

References

  1. Adams MR, Moss MO (1995) Food microbiology. Royal Society of Chemistry, GuildfordGoogle Scholar
  2. Air Liquide (2019a) Carbon dioxide. Gas encyclopedia, Air Liquide, Paris. https://encyclopedia.airliquide.com/carbon-dioxide. Accessed 1 Oct 2019
  3. Air Liquide (2019b) Argon. Gas encyclopedia, Air Liquide, Paris. https://encyclopedia.airliquide.com/argon. Accessed 1 Oct 2019
  4. Air Liquide (2019c) Nitrogen. Gas encyclopedia, Air Liquide, Paris. https://encyclopedia.airliquide.com/nitrogen. Accessed 1 Oct 2019
  5. Air Liquide (2019d) Hydrogen. Gas encyclopedia, Air Liquide, Paris. https://encyclopedia.airliquide.com/hydrogen. Accessed 1 Oct 2019
  6. Air Liquide (2019e) Oxygen. Gas encyclopedia, Air Liquide, Paris. https://encyclopedia.airliquide.com/oxygen. Accessed 1 Oct 2019
  7. Allen Foegeding E, Lanier TC, Hultin HO (1985) Characteristics of edible muscle tissues. In: Fennema OR (ed) Food chemistry. Marcel Dekker, New YorkGoogle Scholar
  8. Antmanna G, Ares G, Lema P, Lareo C (2008) Influence of modified atmosphere packaging on sensory quality of shiitake mushrooms. Postharv Biol Technol 49(1):164–170.  https://doi.org/10.1016/j.postharvbio.2008.01.020CrossRefGoogle Scholar
  9. Baroni B, Baroni MR, Torri L (2013) L’atmosfera protettiva, 2nd edn. Artek S.n.c, Porto CeresioGoogle Scholar
  10. Bartkowski L, Dryden FD, Marchello JA (1982) Quality changes of beef steaks stored in controlled gas atmospheres containing high or low levels of oxygen. J Food Prot 45(1):42–45.  https://doi.org/10.4315/0362-028X-45.1.41CrossRefGoogle Scholar
  11. CCOHS (2006) Compressed gases. Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, Canada. https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/occup-travail/whmis-simdut/gas-eng.pdf. Accessed 1 Oct 2019
  12. CCOHS (2019) Compressed gases—hazards—hazards. OSH answers fact sheets. Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, Canada. https://www.ccohs.ca/oshanswers/chemicals/compressed/compress.html. Accessed 1 Oct 2019
  13. Danese E (2016) Aspetti normativi sui gas additivi alimentari. Proceedings of the seminar “L’anidride carbonica ad uso alimentare: dalla produzione all’utilizzo”, Federchimica Assogastecnici, Milan, 24 maggio 2016Google Scholar
  14. Delia S, Laganà P, Parisi S (2005) Materiali e metodi di confezionamento nella conservazione dei prodotti alimentari refrigerati. In: Proceedings of the XIV Conferenza Nazionale “Microbiologia degli alimenti conservati in stato di refrigerazione”, Facoltà di Chimica Industriale, Università degli Studi di Bologna, Italy, pp 93–111Google Scholar
  15. Engineering ToolBox (2018a) Carbon dioxide—density and specific weight. www.engineeringtoolbox.com. https://www.engineeringtoolbox.com/carbon-dioxide-density-specific-weight-temperature-pressure-d_2018.html. Accessed 1 Oct 2019
  16. Engineering ToolBox (2018b) Argon—density and specific weight. www.engineeringtoolbox.com. https://www.engineeringtoolbox.com/argon-density-specific-weight-temperature-pressure-d_2089.html. Accessed 1 Oct 2019
  17. Engineering ToolBox (2018c) Oxygen—density and specific weight. www.engineeringtoolbox.com. https://www.engineeringtoolbox.com/oxygen-O2-density-specific-weight-temperature-pressure-d_2082.html. Accessed 1 Oct 2019
  18. European Commission (2008) Commission Directive 2008/84/EC of 27 August 2008 laying down specific purity criteria on food additives other than colours and sweeteners. Off J Eur Union L253:1–175Google Scholar
  19. European Parliament and Council (2008) Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off J Eur Union L354:16–33Google Scholar
  20. European Parliament and Council (2011) Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off J Eur Union L304:18–63Google Scholar
  21. Fino MA, Torri L, Porto G (2013) Più che gas: alimenti. Artek S.n.c, Porto CeresioGoogle Scholar
  22. Ghorpade VM, Hanna MA, Kadam SS (1995) Apricot. In: Salunke DK, Kadam SS (eds) Handbook of fruit science and technology: production, composition, storage and processing. Marcel Dekker, New York, pp 335–361 (sundried apricots may be treated with gaseous SO2 to retain their natural colour [24])Google Scholar
  23. Hanna MO, Vanderzant C, Smith GC, Savell JW (1981) Packaging of beef loin steaks in 75% O2 + 25% CO2. II. Microbiological properties. J Food Prot 44(12):928–933.  https://doi.org/10.4315/0362-028X-44.12.928CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hanks HR, Nickelson R II, Finne G (1980) Shelf-life studies on carbon dioxide packaged finfish from the Gulf of Mexico. J Food Sci 45(2):157–162.  https://doi.org/10.1111/j.1365-2621.1980.tb02566.xCrossRefGoogle Scholar
  25. Hotchkiss JH, Baker RC, Qureshi RA (1985) Elevated carbon dioxide atmospheres for packaging poultry. II. Effects of chicken quarters and bulk packages. Poult Sci 64, 2:333–340.  https://doi.org/10.3382/ps.0640333CrossRefGoogle Scholar
  26. Kader AA, Zagory D, Kerbel EL (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28(1):1–30.  https://doi.org/10.1080/10408398909527490CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kregiel D (2015) Health safety of soft drinks: contents, containers, and microorganisms. BioMed Res Int 2015, Article ID 128697:1–15.  https://doi.org/10.1155/2015/128697CrossRefGoogle Scholar
  28. Laganà P, Avventuroso E, Romano G, Gioffré ME, Patanè P, Parisi S, Moscato U, Delia S (2018) Chemistry and hygiene of food additives. SpringerBriefs in Chemistry of Foods, Springer Nature Switzerland AG, Cham.  https://doi.org/10.1007/978-3-319-57042-6CrossRefGoogle Scholar
  29. Linde (2016) Safety advice. Cryogenic liquefied gases. Linde North America, Inc., Murray Hill. https://www.lindeus.com/en/images/2987_0416_04_cryogenic_gases_v1_tcm138-276008.pdf. Accessed 1 Oct 2019
  30. Livesu S (2007) La Normativa specifica applicabile ai gas alimentari. Proceedings of the Conference “Qualità e Sicurezza con i Gas Alimentari” Federchimica Assogastecnici, Milan, Auditorium Federchimica, 17 October 2007Google Scholar
  31. Mania I, Delgado AM, Barone C, Parisi S (2018) Traceability in the dairy industry in Europe—theory and practice. Springer Nature Switzerland AG, Cham.  https://doi.org/10.1007/978-3-030-00446-0CrossRefGoogle Scholar
  32. Maniar AB, Marcy JE, Bishop JR, Duncan SE (1994) Modified atmosphere packaging to maintain direct set cottage cheese quality. J Food Sci 59(6):1305–1308.  https://doi.org/10.1111/j.1365-2621.1994.tb14701.xCrossRefGoogle Scholar
  33. Ngadi MO, Bajwa SSS, Alakali J (2012) Minimally processed foods. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn. Wiley-Blackwell, Ames, Chichester, and OxfordCrossRefGoogle Scholar
  34. NIOSH (2018) Carbon dioxide. The National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards. NIOSH, Washington, D.C. https://www.cdc.gov/niosh/npg/npgd0103.html. Accessed 1 Oct 2019
  35. Nobles JE, Swenson LK (1984) US Patent 4,460,395, 17 July 1984Google Scholar
  36. Parkin KL, Brown WD (1982) Preservation of seafood with modified atmospheres. In: Martin RE, Flick GJ, Hebard CE, Ward DR (eds) Chemistry and biochemistry of marine food products. AVI Publishing Co., Inc, Westport, pp 453–465Google Scholar
  37. Pérez-Rodríguez F, Zamorano AR, Posada-Izquierdo GD, García-Gimeno RM (2013) Study of the effect of post-packaging pasteurization and argon modified atmosphere packaging on the sensory quality and growth of endogenous microflora of a sliced cooked meat product. Food Sci Technol Int 20(1):3–12.  https://doi.org/10.1177/1082013212469613CrossRefPubMedPubMedCentralGoogle Scholar
  38. Phillips CA (1996) Review: modified atmosphere packaging and its effects on the microbiological quality and safety of produce. Int J Food Sci Technol 31(6):463–479.  https://doi.org/10.1046/j.1365-2621.1996.00369.xCrossRefGoogle Scholar
  39. Piergiovanni L, Limbo S (2010) Food packaging: materiali, tecnologie e soluzioni. Milano: Springer-Verlag Italia, Milan, p 422Google Scholar
  40. Piergiovanni L, Limbo S (2016) Food packaging materials. SpringerBriefs in Chemistry of Foods, Springer International Publishing, Cham, pp 33–49.  https://doi.org/10.1007/978-3-319-24732-8CrossRefGoogle Scholar
  41. Ryan JM (2015) Food fraud. Academic Press, London, San Diego, Waltham, and OxfordGoogle Scholar
  42. Scott K (1998) Air and gas filtration and cleaning. In: Scott K (ed) Handbook of industrial membranes, 2nd edn. Elsevier B.V., Amsterdam.  https://doi.org/10.1016/b978-185617233-2/50007-6CrossRefGoogle Scholar
  43. Smith WH (1964) The use of carbon dioxide in the transport and storage of fruits and vegetables. Adv Food Res 12:95–146.  https://doi.org/10.1016/S0065-2628(08)60007-5CrossRefGoogle Scholar
  44. SOL (2000) Lavorare in sicurezza - Impianti di produzione e distribuzione di gas tecnici. SOL S.p.A, MonzaGoogle Scholar
  45. Szpylka J, Thiex N, Acevedo B, Albizu A, Angrish P, Austin S, Bach Knudsen KE, Barber CA, Berg D, Bhandari SD, Bienvenue A, Cahill K, Caldwell J, Campargue C, Cho F, Collison MW, Cornaggia C, Cruijsen H, Das M, De Vreeze M, Deutz I, Donelson J, Dubois A, Duchateau GS, Duchateau L, Ellingson D, Gandhi J, Gottsleben F, Hache J, Hagood G, Hamad M, Haselberger PA, Hektor T, Hoefling R, Holroyd S, Holt DL, Horst JG, Ivory R, Jaureguibeitia A, Jennens M, Kavolis DC, Kock L, Konings EJM, Krepich S, Krueger DA, Lacorn M, Lassitter CL, Lee S, Li H, Liu A, Liu K, Lusiak BD, Lynch E, Mastovska K, McCleary BV, Mercier GM, Metra PL, Monti L, Moscoso CJ, Narayanan H, Parisi S, Perinello G, Phillips MM, Pyatt S, Raessler M, Reimann LM, Rimmer CA, Rodriguez A, Romano J, Salleres S, Sliwinski M, Smyth G, Stanley K, Steegmans M, Suzuki H, Swartout K, Tahiri N, Ten Eyck R, Torres Rodriguez MG, Van Slate J, Van Soest PJ, Vennard T, Vidal R, Hedegaard RSV, Vrasidas I, Vrasidas Y, Walford S, Wehling P, Winkler P, Winter R, Wirthwine B, Wolfe D, Wood L, Woollard DC, Yadlapalli S, Yan X, Yang J, Yang Z, Zhao G (2018a) Standard method performance requirements (SMPRs®) 2018.001: sugars in animal feed, pet food, and human food. J AOAC Int 101, 4:1280–1282.  https://doi.org/10.5740/jaoacint.smpr2018.001CrossRefGoogle Scholar
  46. Szpylka J, Thiex N, Acevedo B, Albizu A, Angrish P, Austin S, Bach Knudsen KE, Barber CA, Berg D, Bhandari SD, Bienvenue A, Cahill K, Caldwell J, Campargue C, Cho F, Collison MW, Cornaggia C, Cruijsen H, Das M, De Vreeze M, Deutz I, Donelson J, Dubois A, Duchateau GS, Duchateau L, Ellingson D, Gandhi J, Gottsleben F, Hache J, Hagood G, Hamad M, Haselberger PA, Hektor T, Hoefling R, Holroyd S, Lloyd Holt D, Horst JG, Ivory R, Jaureguibeitia A, Jennens M, Kavolis DC, Kock L, Konings EJM, Krepich S, Krueger DA, Lacorn M, Lassitter CL, Lee S, Li H, Liu A, Liu K, Lusiak BD, Lynch E, Mastovska K, McCleary BV, Mercier GM, Metra PL, Monti L, Moscoso CJ, Narayanan H, Parisi S, Perinello G, Phillips MM, Pyatt S, Raessler M, Reimann LM, Rimmer CA, Rodriguez A, Romano J, Salleres S, Sliwinski M, Smyth G, Stanley K, Steegmans M, Suzuki H, Swartout K, Tahiri N, Eyck RT, Torres Rodriguez MG, Van Slate J, Van Soest PJ, Vennard T, Vidal R, Vinbord Hedegaard RS, Vrasidas I, Vrasidas Y, Walford S, Wehling P, Winkler P, Winter R, Wirthwine B, Wolfe D, Wood L, Woollard DC, Yadlapalli S, Yan X, Yang J, Yang Z, Zhao G (2018b) Standard method performance requirements (SMPRs®) 2018.002: fructans in animal food (Animal feed, pet food, and ingredients). J AOAC Int 101, 4:1283–1284.  https://doi.org/10.5740/jaoacint.smpr2018.002CrossRefGoogle Scholar
  47. Szpylka S, Thiex N, Acevedo B, Albizu A, Angrish P, Austin S, Bach Knudsen KE, Barber CA, Berg D, Bhandari SD, Bienvenue A, Cahill K, Caldwell J, Campargue C, Cho F, Collison MW, Contarini G, Cornaggia C, Cruijsen H, Das M, U.S. De Vreeze M, Deutz I, Donelson J, Dubois A, Duchateau GS, Duchateau L, Ellingson D, Gandhi J, Gottsleben F, Hache J, Hagood G, Hamad M, Haselberger PA, Hektor T, Hoefling R, Holroyd S, Holt DL, Horst JG, Ivory R, Jaureguibeitia A, Jennens M, Kavolis DC, Kock L, Konings EJM, Krepich S, Krueger DA, Lacorn M, Lassitter CL, Lee S, Li H, Liu A, Liu K, Lusiak BD, Lynch E, Mastovska K, McCleary BV, Mercier GM, Metra PL, Monti L, Moscoso CJ, Narayanan H, Parisi S, Perinello G, Phillips MM, Pyatt S, Raessler M, Reimann LM, Rimmer CA, Rodriguez A, Romano J, Salleres S, Sharma DK, Sliwinski M, Smyth G, Stanley K, Steegmans M, Suzuki H, Swartout K, Tahiri N, Eyck RT, Torres Rodriguez MG, Van Slate J, Van Soest PJ, Vennard T, Vidal R, Vinbord Hedegaard RK, Vrasidas I, Vrasidas Y, Walford S, Wehling P, Winkler P, Winter R, Wirthwine B, Wolfe D, Wood L, Woollard DC, Yadlapalli S, Yan X, Yang J, Yang Z, Zhao G (2019) Standard method performance requirements (SMPRs®) 2018.009: lactose in low-lactose or lactose-free milk, milk products, and products containing dairy ingredients. J AOAC Int 102, 1:336–338.  https://doi.org/10.5740/jaoacint.smpr2018.009
  48. Temiz H (2010) Effect of modified atmosphere packaging on characteristics of sliced Kashar cheese. J Food Proc Preserv 34(5):926–943.  https://doi.org/10.1111/j.1745-4549.2009.00431.xCrossRefGoogle Scholar
  49. Temiz H, Aykut U, Hursit AK (2009) Shelf life of Turkish whey cheese (Lor) under modified atmosphere packaging. Int J Dairy Technol 62(3):378–386.  https://doi.org/10.1111/j.1471-0307.2009.00511.xCrossRefGoogle Scholar
  50. Vescovo M, Scolari G, Orsi C, Sinigaglia M, Torriani S (1997) Combined effects of Lactobacillus casei inoculum, modified atmosphere packaging and storage temperature in controlling Aeromonas hydrophila in ready-to-use vegetables. Int J Food Sci Technol 32(5):411–419.  https://doi.org/10.1046/j.1365-2621.1997.00121.xCrossRefGoogle Scholar
  51. Zhang BY, Samapundo S, Pothakos V, de Baenst I, Sürengil G, Noseda B, Devlieghere F (2013) Effect of atmospheres combining high oxygen and carbon dioxide levels on microbial spoilage and sensory quality of fresh-cut pineapple. Postharv Biol Technol 86:73–84.  https://doi.org/10.1016/j.postharvbio.2013.06.019CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pasqualina Laganà
    • 1
  • Giovanni Campanella
    • 1
  • Paolo Patanè
    • 1
  • Maria Assunta Cava
    • 2
  • Salvatore Parisi
    • 3
  • Maria Elsa Gambuzza
    • 4
  • Santi Delia
    • 1
  • Maria Anna Coniglio
    • 5
  1. 1.Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
  2. 2.University Hospital Santa Maria della MisericordiaUdineItaly
  3. 3.Al-Balqa Applied UniversityAl-SaltJordan
  4. 4.Territorial Office of MessinaItalian Ministry of HealthMessinaItaly
  5. 5.Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”University of CataniaCataniaItaly

Personalised recommendations