Advertisement

Polyhedral Compilation Support for C++ Features: A Case Study with CPPTRAJ

  • Amit Roy
  • Daniel Roe
  • Mary HallEmail author
  • Thomas Cheatham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11403)

Abstract

This paper reveals challenges in migrating C++ codes to GPUs using polyhedral compiler technology. We point to instances where reasoning about C++ constructs in a polyhedral model is feasible. We describe a case study using CPPTRAJ, an analysis code for molecular dynamics trajectory data. An initial experiment applied the CUDA-CHiLL compiler to key computations in CPPTRAJ to migrate them to the GPUs of NCSA’s Blue Waters supercomputer. We found three aspects of this code made program analysis difficult: (1) STL C++ vectors; (2) structures of vectors; and, (3) iterators over these structures. We show how we can rewrite the computation to affine form suitable for CUDA-CHiLL, and also describe how to support the original C++ code in a polyhedral framework. The result of this effort yielded speedups over serial ranging from 3\(\times \) to 278\(\times \) on the six optimized kernels, and up to 100\(\times \) over serial and 10\(\times \) speedup over OpenMP.

Notes

Acknowledgment

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

References

  1. 1.
    Roe, D.R., Cheatham, T.E.: Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9(7), 3084–3095 (2013).  https://doi.org/10.1021/ct400341p. pMID: 2658398CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Rudy, G., Khan, M.M., Hall, M., Chen, C., Chame, J.: A programming language interface to describe transformations and code generation. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 136–150. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19595-2_10CrossRefGoogle Scholar
  5. 5.
    Khan, M., Basu, P., Rudy, G., Hall, M., Chen, C., Chame, J.: A script-based autotuning compiler system to generate high-performance cuda code. ACM Trans. Archit. Code Optim. 9(4), 31:1–31:25 (2013).  https://doi.org/10.1145/2400682.2400690CrossRefGoogle Scholar
  6. 6.
    Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 79–103. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61736-1_44CrossRefGoogle Scholar
  7. 7.
    Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-Based Approach. Morgan Kaufmann Publishers, Burlington (2002)Google Scholar
  8. 8.
    Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: Symposium on Principles and Practice of Parallel Programming, April 1991Google Scholar
  9. 9.
    Kelly, W.A.: Optimization within a unified transformation framework. Ph.D. dissertation, University of Maryland, December 1996Google Scholar
  10. 10.
    Quilleré, F., Rajopadhye, S.: Generation of efficient nested loops from polyhedra. Int. J. Parallel Program. 28(5), 469–498 (2000)CrossRefGoogle Scholar
  11. 11.
    Vasilache, N., Bastoul, C., Cohen, A.: Polyhedral code generation in the real world. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 185–201. Springer, Heidelberg (2006).  https://doi.org/10.1007/11688839_16CrossRefGoogle Scholar
  12. 12.
    Chen, C.: Polyhedra scanning revisited. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, ser. PLDI 2012, pp. 499–508, June 2012Google Scholar
  13. 13.
    Adamski, D., Jablonski, G., Perek, P., Napieralski, A.: Polyhedral source-to-source compiler. In: 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, pp. 458–463, June 2016Google Scholar
  14. 14.
    Grosser, T., Armin, G., Lengauer, C.: Pollyâperforming polyhedral optimizations on a low-level intermediate representation. Parallel Process. Lett. 22(04), 1250010 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA code generation for affine programs. In: Proceedings of the International Conference on Compiler Construction, March 2010Google Scholar
  16. 16.
    Leung, A.: A mapping path for multi-GPGPU accelerated computers from a portable high level programming abstraction. In: Workshop on General-Purpose Processing using GPUs, September 2010Google Scholar
  17. 17.
  18. 18.
    Sujeeth, A.K., et al.: Delite: a compiler architecture for performance-oriented embedded domain-specific languages. ACM Trans. Embed. Comput. Syst. 13(4s), 134:1–134:25 (2014).  https://doi.org/10.1145/2584665CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amit Roy
    • 1
  • Daniel Roe
    • 2
  • Mary Hall
    • 1
    Email author
  • Thomas Cheatham
    • 2
  1. 1.School of ComputingUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Medicinal ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations