Modeling the Evolution of Ploidy in a Resource Restricted Environment
Abstract
Gliomas are tumors that evolve from glial cells in the brain or spine. Most gliomas are diagnosed as either lower-grade lesions (grade II) or Glioblastoma (grade IV). Progression of lower-grade gliomas (LGG) to Glioblastoma (GBM) is accompanied by a phenotypic switch to a highly invasive tumor cell phenotype. Converging evidence from different cancer types, including colorectal-, breast-, and lung- cancers, suggests a strong enrichment of high ploidy cells among metastatic lesions as compared to the primary tumor [1, 2]. Even in normal development: trophoblast giant cells - the first cell type to terminally differentiate during embryogenesis - are responsible for invading the placenta and strikingly these cells can have up to 1000 copies of the genome [5]. All this points to the existence of a ubiquitous mechanism that links high DNA content to an invasive phenotype. We formulate a mechanistic Grow-or-go model that postulates higher energy demands of high-ploidy cells as a driver of their invasive behavior. We will test whether this mechanism may contribute to the quick recurrence of GBMs after surgery [7] and whether it can explain striking differences in the prognostic power of integrin signaling and cell cycle progression between males and females [13].
Keywords
Ploidy Glioblastoma Mathematical modelingReferences
- 1.Angelova, M., et al.: Evolution of metastases in space and time under immune selection. Cell 175(3), 751–765.e16 (2018). https://doi.org/10.1016/j.cell.2018.09.018. ISSN: 0092-8674, sciencedirect.com/science/article/pii/S0092867418312303. Accessed 15 Mar 2019CrossRefGoogle Scholar
- 2.Brastianos, P.K., et al.: Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discovery 5(11), 1164–1177 (2015). https://doi.org/10.1158/2159-8290.CD-15-0369. ISSN: 2159-8290CrossRefGoogle Scholar
- 3.Chen, G., et al.: Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482(7384), 246–250 (2012). https://doi.org/10.1038/nature10795. ISSN: 1476-4687CrossRefGoogle Scholar
- 4.Chen, G., et al.: Targeting the adaptability of heterogeneous aneuploids. Cell 160(4), 771–784 (2015). https://doi.org/10.1016/j.cell.2015.01.026. ISSN: 1097-4172CrossRefGoogle Scholar
- 5.Hannibal, R.L., et al.: Copy number variation is a fundamental aspect of the placental genome. PLoS Genet. 10(5), e1004290 (2014). https://doi.org/10.1371/journal.pgen.1004290. ISSN: 1553-7404CrossRefGoogle Scholar
- 6.Hastings, P.J., et al.: Mechanisms of change in gene copy number. Nat. Rev. Genet. 10(8), 551–564 (2009). https://doi.org/10.1038/nrg2593. ISSN: 1471-0056, ncbi.nlm.nih.gov/pmc/articles/PMC2864001/. Accessed 15 Aug 2015CrossRefGoogle Scholar
- 7.Hatzikirou, H., et al.: ‘Go or grow’: the key to the emergence of invasion in tumour progression? Math. Med. Biol. J. IMA 29(1), 49–65 (2012). https://doi.org/10.1093/imammb/dqq011. ISSN:1477-8602MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Mroz, E.A., et al.: Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 12(2), e1001786 (2015). https://doi.org/10.1371/journal.pmed.1001786. ISSN: 1549-1676CrossRefGoogle Scholar
- 9.Puchalski, R.B., et al.: An anatomic transcriptional atlas of human glioblastoma. Science 360(6389), 660–663 (2018). https://doi.org/10.1126/science.aaf2666. ISSN: 0036-8075, 1095-9203, science.sciencemag.org/content/360/6389/660. Accessed 15 Mar 2019CrossRefGoogle Scholar
- 10.Saut, O., et al.: A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth. Bull. Math. Biol. 76(9), 2306–2333 (2014). https://doi.org/10.1007/s11538-014-0007-y. ISSN: 1522-9602MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Soukup, S.W., Ohno, S.: Evolution by Gene Duplication, p. 160. Springer, New York (1970). Teratology 9(2), 250–251 (1974). ISSN: 1096-9926, https://doi.org/10.1002/tera.1420090224, http://onlinelibrary.wiley.com/doi/10.1002/tera.1420090224/abstract. Accessed 31 Aug 2014CrossRefGoogle Scholar
- 12.Worrall, J.T., et al.: Non-random mis-segregation of human chromosomes. Cell Rep. 23(11), 3366–3380 (2018). https://doi.org/10.1016/j.celrep.2018.05.047. ISSN: 2211-1247CrossRefGoogle Scholar
- 13.Yang, W., et al.: Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Trans. Med. 11(473), eaao5253 (2019). https://doi.org/10.1126/scitranslmed.aao5253. ISSN: 1946-6234, 1946-6242, stm.sciencemag.org/content/11/473/eaao5253. Accessed 15 Mar 2019CrossRefGoogle Scholar