Reflected Backward SDEs in a Convex Polyhedron

  • Khadija AkdimEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


A backward stochastic differential equation is forced to stay within a d-dimensional bounded convex polyhedral domain, thanks to the action of oblique reflecting process at the boundary. The Lipschitz continuity on the reflection directions together with the Lipschitz continuity of the drift gives the existence and uniqueness of the solution.


Vector field Gaussian process Random field Covariance operator 


  1. 1.
    Chaleyat-Maurel, El Karoui, N. and Marchal, B. (1980) Reflexion discontinue et systémes stochastiques. Ann. Proba., 8, 1049–1067.MathSciNetCrossRefGoogle Scholar
  2. 2.
    El Karoui N, Kapoudjian C, Pardoux E, Peng S and Quenez M C. (1997) Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 702–737.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gegout-Petit, A. and Pardoux, E. (1996) Equations différentielles stochastiques rétrogrades refléchies dans un convexe. Stochastics and Stochastics Reports, 57, 111–128.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ikeda, N. and Watanabe, S. (1989) Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam.zbMATHGoogle Scholar
  5. 5.
    Liptser, R.Sh. and Shiryayev, A.N. (1989) Theory of Martingales. Kluwer Acad. Publ.CrossRefGoogle Scholar
  6. 6.
    Lions P.L. and Sznitman A.S. (1984) Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math., 37, 511–537.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Menaldi, J.L. and Robin, M. (1985) Reflected diffusion processes with jumps. Annals of Probability, 13:2, 319–341.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ouknine, Y. (1998) Reflected backward stochastic differential equations with jumps. Stochastics and Stochastics Reports 65, 111–125.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shashiashvili M. (1996) The Skorokhod oblique reflection problem in a convex polyhedron. Georgian Math. J. 3 153–176.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Tanaka, H. (1979) Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9, 163–177.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Watanabe, S. (1971) On stochastic differential equations for multidimensional diffusion processes with boundary conditions. J. Math. Kyoto Univ. 11, 169–180.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences and TechniquesCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations