Advertisement

A Framework for UC-Secure Commitments from Publicly Computable Smooth Projective Hashing

  • Behzad AbdolmalekiEmail author
  • Hamidreza Khoshakhlagh
  • Daniel Slamanig
Conference paper
  • 24 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11929)

Abstract

Hash proof systems or smooth projective hash functions (SPHFs) have been proposed by Cramer and Shoup (Eurocrypt’02) and can be seen as special type of zero-knowledge proof system for a language. While initially used to build efficient chosen-ciphertext secure public-key encryption, they found numerous applications in several other contexts. In this paper, we revisit the notion of SPHFs and introduce a new feature (a third mode of hashing) that allows to compute the hash value of an SPHF without having access to neither the witness nor the hashing key, but some additional auxiliary information. We call this new type publicly computable SPHFs (PC-SPHFs) and present a formal framework along with concrete instantiations from a large class of SPHFs.

We then show that this new tool generically leads to commitment schemes that are secure against adaptive adversaries, assuming erasures in the Universal Composability (UC) framework, yielding the first UC secure commitments build from a single SPHF instance. Instantiating our PC-SPHF with an SPHF for labeled Cramer-Shoup encryption gives the currently most efficient non-interactive UC-secure commitment. Finally, we also discuss additional applications to information retrieval based on anonymous credentials being UC secure against adaptive adversaries.

Notes

Acknowledgments

This work was supported by the EU’s Horizon 2020 ECSEL Joint Undertaking project SECREDAS under grant agreement n\(\circ \)783119, the Austrian Science Fund (FWF) and netidee SCIENCE project PROFET (grant agreement P31621-N38) and the Estonian Research Council grant PRG49.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_12CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explainable hash proof systems. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 151–174. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_7CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_39CrossRefGoogle Scholar
  4. 4.
    Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M.: DL-extractable UC-commitment schemes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 385–405. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-21568-2_19CrossRefGoogle Scholar
  5. 5.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_7CrossRefGoogle Scholar
  6. 6.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_25CrossRefGoogle Scholar
  7. 7.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. Cryptology ePrint Archive, Report 2015/188 (2015). http://eprint.iacr.org/2015/188
  8. 8.
    Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_22CrossRefGoogle Scholar
  9. 9.
    Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 339–369. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_12CrossRefGoogle Scholar
  10. 10.
    Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving protocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_6CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen, M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31301-6_1CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_7CrossRefGoogle Scholar
  13. 13.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36413-7_20CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_4CrossRefGoogle Scholar
  15. 15.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  16. 16.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_2CrossRefGoogle Scholar
  17. 17.
    Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39805-8_28CrossRefGoogle Scholar
  18. 18.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  19. 19.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  20. 20.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  21. 21.
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_25CrossRefGoogle Scholar
  22. 22.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2), 498–546 (2019).  https://doi.org/10.1007/s00145-018-9281-4MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  24. 24.
    Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_37CrossRefGoogle Scholar
  25. 25.
    Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_18CrossRefGoogle Scholar
  26. 26.
    Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61273-7_5CrossRefGoogle Scholar
  27. 27.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  28. 28.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Behzad Abdolmaleki
    • 1
    Email author
  • Hamidreza Khoshakhlagh
    • 2
  • Daniel Slamanig
    • 3
  1. 1.University of TartuTartuEstonia
  2. 2.Aarhus UniversityAarhusDenmark
  3. 3.AIT Austrian Institute of TechnologyViennaAustria

Personalised recommendations