Advertisement

From Simplified Kripke-Style Semantics to Simplified Analytic Tableaux for Some Normal Modal Logics

  • Yaroslav Petrukhin
  • Michał ZawidzkiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)

Abstract

Modal logics \(\mathsf{K45}\), \(\mathsf{KB4}\), \(\mathsf{KD45}\) and \(\mathsf{S5}\) are of particular interest in knowledge representation, especially in the context of knowledge and belief modelling. Pietruszczak showed that these logics are curious for another reason, namely for the fact that their Kripke-style semantics can be simplified. A simplified frame has the form \(\langle W,A\rangle \), where \(A\subseteq W\). A reachability relation R may be defined as \(R=W\times A\), which, however, makes it superfluous to explicitly refer to it. It is well-known that \(\mathsf{S5}\) is determined by Kripke frames with \(R=W\times W\), i.e., \(A=W\). Pietruszczak showed what classes of simplified frames determine \(\mathsf{K45}\), \(\mathsf{KD45}\), and \(\mathsf{KB4}\). These results were generalized to the extensions of these logics by Segerberg’s formulas. In this paper, we devise sound, complete and terminating prefixed tableau algorithms based on simplified semantics for these logics. Since no separate rules are needed to handle the reachability relation and prefixes do not store any extra information, the calculi are accessible and conceptually simple and the process of countermodel-construction out of an open tableau branch is straightforward. Moreover, we obtain a nice explanation of why these logics are computationally easier than most modal logics, in particular \(\textsc {NP}\)-complete.

Keywords

Modal logic Automated reasoning Decision procedures Analytic tableaux Simplified Kripke-style semantics 

Notes

Acknowledgements

We would like to thank the anonymous reviewers whose comments helped substantially improve this paper.

References

  1. 1.
    Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Tableaux for diagnosis applications. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 76–90. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0027406CrossRefzbMATHGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. No. 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  3. 3.
    Fitting, M.: A tableau system for propositional S5. Notre Dame J. Formal Logic 18(2), 292–294 (1977).  https://doi.org/10.1305/ndjfl/1093887933MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. No. 169 in Synthese Library. Springer, Dordrecht (1983).  https://doi.org/10.1007/978-94-017-2794-5CrossRefzbMATHGoogle Scholar
  5. 5.
    Fitting, M.: A simple propositional S5 tableau system. Ann. Pure Appl. Logic 96(1), 107–115 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  7. 7.
    Gabbay, D.M., Governatori, G.: Fibred modal tableaux. In: Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 161–191. Springer, Netherlands, Dordrecht (2000).  https://doi.org/10.1007/978-94-011-4040-9_7CrossRefGoogle Scholar
  8. 8.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Springer, Dordrecht (1999).  https://doi.org/10.1007/978-94-017-1754-0_6CrossRefzbMATHGoogle Scholar
  9. 9.
    Governatori, G.: On the relative complexity of labelled modal tableaux. Electron. Notes Theor. Comput. Sci. 78, 40–57 (2003)CrossRefGoogle Scholar
  10. 10.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)Google Scholar
  12. 12.
    Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 448–453. Professional Book Center (2005)Google Scholar
  13. 13.
    Indrzejczak, A., Zawidzki, M.: Decision procedures for some strong hybrid logics. Logic Log. Philos. 22(4), 389–409 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 235–249. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02716-1_18CrossRefzbMATHGoogle Scholar
  15. 15.
    Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. Logical Methods Comput. Sci. 7(1), 1–21 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14 (1959)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Massacci, F.: Single step tableaux for modal logics. J. Autom. Reason. 24(3), 319–364 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  20. 20.
    Papacchini, F.: Minimal model reasoning for modal logic. Ph.D. thesis, University of Manchester (2015)Google Scholar
  21. 21.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web, pp. 633–640. WWW 2005. ACM, New York (2005)Google Scholar
  22. 22.
    Perkov, T.: A generalization of modal frame definability. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds.) ESSLLI Student Sessions 2013. LNCS, vol. 8607, pp. 142–153. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44116-9_10CrossRefGoogle Scholar
  23. 23.
    Pietruszczak, A.: Simplified Kripke-style semantics for modal logics K45, KB4 and KD45. Bull. Sect. Logic 38(3–4), 163–171 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Pietruszczak, A., Klonowski, M., Petrukhin, Y., Simplified Kripke-style semantics for some normal modal logics. Studia Logica (2019).  https://doi.org/10.1007/s11225-019-09849-2
  25. 25.
    Priest, G.: An Introduction to Non-Classical Logic: From If to Is. Cambridge Introductions to Philosophy, 2nd edn. Cambridge University Press, Cambridge (2008).  https://doi.org/10.1017/CBO9780511801174CrossRefzbMATHGoogle Scholar
  26. 26.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 310–324. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02716-1_23CrossRefzbMATHGoogle Scholar
  28. 28.
    Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical Methods Comput. Sci. 7(2) (2011).  https://doi.org/10.2168/LMCS-7(2:6)2011
  29. 29.
    Segerberg, K.K.: An Essay in Classical Modal Logic. Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet, Uppsala (1971)zbMATHGoogle Scholar
  30. 30.
    Takano, M.: A modified subformula property for the modal logics K5 and K5D. Bull. Sect. Logic 30(2), 115–122 (2001)MathSciNetzbMATHGoogle Scholar
  31. 31.
    van Benthem, J.: Modal Logic for Open Minds. CSLI Lecture Notes, vol. 199. CSLI Publications, Stanford (2010)Google Scholar
  32. 32.
    van Dietmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications, Milton Keynes (2015)Google Scholar
  33. 33.
    Viganò, L.: Labelled Non-Classical Logics. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  34. 34.
    Zawidzki, M.: Deductive Systems and the Decidability Problem for Hybrid Logics. Łódź University Press/Jagiellonian University Press, Łódź/Kraków (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of LogicUniversity of ŁódźŁódźPoland

Personalised recommendations