Strongly Equivalent Epistemic Answer Set Programs

  • Ezgi Iraz SuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


Epistemic answer set programming (\(\mathsf {EASP}\)) is a recent epistemic extension of answer set programming (\(\mathsf {ASP}\)), endowed with the epistemic answer set (EAS) semantics. EASs propose a straightforward generalisation of ASP’s original answer set semantics. Moreover, they provide intended results both for cyclic and acyclic programs, possibly containing arbitrary constraints. Epistemic here-and-there logic (\(\mathsf {EHT}\)) is also a recent epistemic extension of a well-known nonclassical logic called here-and-there logic (\(\mathsf {HT}\)), which is intermediate between classical logic and intuitionistic logic. In this paper, we discuss a strong equivalence characterisation for \(\mathsf {EASP}\) programs, which is identified on \(\mathsf {EHT}\).


Answer set programming Epistemic specifications Modal logic \(\mathsf {S5}\) Epistemic logic programs Answer sets World views Strong equivalence 


  1. 1.
    Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint Conference on Artificial Intelligence, pp. 2964–2970. AAAI Press (2015).
  2. 2.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005). Scholar
  3. 3.
    Gelfond, M.: Strong introspection. In: Dean, T.L., McKeown, K. (eds.) Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991, vol. 1, pp. 386–391. AAAI Press/The MIT Press (1991)Google Scholar
  4. 4.
    Gelfond, M.: Logic programming and reasoning with incomplete information. Ann. Math. Artif. Intell. 12(1–2), 89–116 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)Google Scholar
  6. 6.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuss. Akad. Wiss. 42–71, 158–169 (1930)zbMATHGoogle Scholar
  7. 7.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001). Scholar
  8. 8.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). Scholar
  9. 9.
    Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shen, Y., Eiter, T.: Evaluating epistemic negation in answer set programming. Artif. Intell. 237, 115–135 (2016). Scholar
  11. 11.
    Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh, College of Science and Engineering, School of Informatics, November 1994Google Scholar
  12. 12.
    Su, E.I.: Extensions of equilibrium logic by modal concepts. (Extensions de la logique d’équilibre par des concepts modaux). Ph.D. thesis, Institut de Recherche en Informatique de Toulouse, France (2015).
  13. 13.
    Su, E.I.: Epistemic answer set programming. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 608–626. Springer, Cham (2019). Scholar
  14. 14.
    Wang, K., Zhang, Y.: Nested epistemic logic programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 279–290. Springer, Heidelberg (2005). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Toulouse, IRITToulouseFrance

Personalised recommendations