Periodicity Detection of Emotional Communities in Microblogging

  • Corrado LoglisciEmail author
  • Donato Malerba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


Social media allow users convey emotions, which are often related to real-world events, social relationships or personal experiences. Indeed, emotions can determine the propension of the users to socialize or attend events. Similarly, interactions with people can influence the personality and feelings of the individuals. Therefore, studying emotional content generated by the users can reveal information on the behavior of users or collectives of users. However, such an information is related only to a specific moment when the emotions are sporadic or episodic, therefore they could have little usefulness. On the contrary, it can have greater significance tracing emotions over time and understanding whether they may appear with regularity or whether they are associated to behaviors already observed in past and could recur.

In this paper, we focus on the periodicity with which emotional words appear in the micro-blogs as indication of a collective emotional behavior expressed with regularity. We propose a computational solution that builds a cyberspace based on the emotional content produced by the users and determines communities of users who express with periodicity similar emotional behaviors. We show the viability of the method on the data of the social media platform Twitter and provide a quantitative evaluation and qualitative considerations.



This work fulfills the objectives the project “Computer-mediated collaboration in creative projects” (8GPS5R0) collocated in “Intervento cofinanziato dal Fondo di Sviluppo e Coesione 2007-2013 – APQ Ricerca Regione Puglia - Programma regionale a sostegno della specializzazione intelligente e della sostenibilita’ sociale ed ambientale - FutureInResearch”.


  1. 1.
    Ceci, M., Loglisci, C., Macchia, L.: Ranking sentences for keyphrase extraction: a relational data mining approach. In: Agosti, M., Catarci, T., Esposito, F. (eds.) Pushing the Boundaries of the Digital Libraries Field - 10th Italian Research Conference on Digital Libraries, IRCDL 2014, Padua, Italy, 30–31 January 2014. Procedia Computer Science, vol. 38, pp. 52–59. Elsevier (2014). Scholar
  2. 2.
    Chen, X., Sykora, M.D., Jackson, T.W., Elayan, S.: What about mood swings: identifying depression on twitter with temporal measures of emotions. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, International World Wide Web Conferences Steering Committee, pp. 1653–1660 (2018).
  3. 3.
    Ekman, P.: Facial expression and emotion. Am. psychol. 48, 384–92 (1993)CrossRefGoogle Scholar
  4. 4.
    Garas, A., Garcia, D., Skowron, M., Schweitzer, F.: Emotional persistence in online chatting communities. Sci. Rep. 2, 402 (2012). Scholar
  5. 5.
    Golder, S., Macy, M.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011). Scholar
  6. 6.
    Huang, K., Chang, C.: SMCA: a general model for mining asynchronous periodic patterns in temporal databases. IEEE Trans. Knowl. Data Eng. 17(6), 774–785 (2005). Scholar
  7. 7.
    Jin, S., Zafarani, R.: Emotions in social networks: distributions, patterns, and models. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 1907–1916 (2017).
  8. 8.
    Kanavos, A., Perikos, I.: Towards detecting emotional communities in twitter. In: 9th IEEE International Conference on Research Challenges in Information Science, RCIS 2015, Athens, Greece, 13–15 May 2015, pp. 524–525 (2015).
  9. 9.
    Keene, J.R., Lang, A.: Dynamic motivated processing of emotional trajectories in public service announcements. Commun. Monogr. 83(4), 468–485 (2016). Scholar
  10. 10.
    Lai, M., Patti, V., Ruffo, G., Rosso, P.: Stance evolution and twitter interactions in an Italian political debate. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 15–27. Springer, Cham (2018). Scholar
  11. 11.
    Layer, R.M., Skadron, K., Robins, G., Hall, I.M., Quinlan, A.R.: Binary interval search: a scalable algorithm for counting interval intersections. Bioinformatics 29(1), 1–7 (2013). Scholar
  12. 12.
    Lerman, K., Arora, M., Gallegos, L., Kumaraguru, P., Garcia, D.: Emotions, demographics and sociability in twitter interactions. In: Tenth International Conference on Web and Social Media, Cologne, Germany, vol. 2016, pp. 201–210 (2016)Google Scholar
  13. 13.
    Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1), 723–734 (2010). Scholar
  14. 14.
    Loglisci, C., Andresini, G., Impedovo, A., Malerba, D.: Analyzing microblogging posts for tracking collective emotional trajectories. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 123–135. Springer, Cham (2018). Scholar
  15. 15.
    Loglisci, C., Appice, A., Malerba, D.: Collective regression for handling autocorrelation of network data in a transductive setting. J. Intell. Inf. Syst. 46(3), 447–472 (2016). Scholar
  16. 16.
    Loglisci, C., Ceci, M., Malerba, D.: Discovering evolution chains in dynamic networks. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2012. LNCS (LNAI), vol. 7765, pp. 185–199. Springer, Heidelberg (2013). Scholar
  17. 17.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). Scholar
  18. 18.
    Mohammad, S., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: Semeval-2018 task 1: affect in tweets. In: Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, 5–6 June 2018, pp. 1–17 (2018)Google Scholar
  19. 19.
    Nissim, M., Patti, V.: Semantic Aspects in Sentiment Analysis. Morgan Kaufmann, Burlington (2016). Scholar
  20. 20.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). Scholar
  21. 21.
    Sano, Y., Takayasu, H., Havlin, S., Takayasu, M.: Identifying long-term periodic cycles and memories of collective emotion in online social media. PLoS ONE 14(3), e0213843 (2019). Scholar
  22. 22.
    Strapparava, C., Valitutti, A.: Wordnet affect: an affective extension of wordnet. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004, Lisbon, Portugal, 26–28 May 2004. European Language Resources Association (2004)Google Scholar
  23. 23.
    Zhou, Q., Zhang, C.: Emotion evolutions of sub-topics about popular events on microblogs. Electron. Lib. 35(4), 770–782 (2017). Scholar
  24. 24.
    Zhu, C., Zhu, H., Ge, Y., Chen, E., Liu, Q.: Tracking the evolution of social emotions: a time-aware topic modeling perspective. In: 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, 14–17 December 2014, pp. 697–706 (2014).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversita’ degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.CINI - Consorzio Interuniversitario Nazionale per l’InformaticaRomeItaly

Personalised recommendations