Number of Minimal Hypergraph Transversals and Complexity of IFM with Infrequency: High in Theory, but Often Not so Much in Practice!

  • Domenico SaccàEmail author
  • Edoardo Serra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


Hypergraph Dualization (also called as hitting set enumeration) is the problem of enumerating all minimal transversals of a hypergraph \({\mathcal {H}}\), i.e., all minimal inclusion-wise hyperedges (i.e., sets of vertices) that intersect every hyperedge in \({\mathcal {H}}\). Dualization is at the core of many important Artificial Intelligence (AI) problems. As a contribution to a better understanding of Dualization complexity, this paper introduces a tight upper bound to the number of minimal transversals that can be computed in polynomial time. In addition, the paper presents an interesting exploitation of the upper bound to the number of minimal transversals. In particular, the problem dealt with is characterizing the complexity of the data mining problem called \(\mathtt {IFM}_{\mathtt {I}}\) (Inverse Frequent itemset Mining with Infrequency constraints), that is the problem of finding a transaction database whose frequent and infrequent itemsets satisfy a number of frequency/infrequency patterns given in input.


Hypergraph transversal Hypergraph dualization Inverse data mining 


  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993).
  2. 2.
    Berge, C.: Graphs and Hypergraphs. North-Holland Pub. Co., Amsterdam (1973)zbMATHGoogle Scholar
  3. 3.
    Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On maximal frequent and minimal infrequent sets in binary matrices. Ann. Math. Artif. Intell. 39, 211–221 (2003). Scholar
  4. 4.
    Calders, T.: Itemset frequency satisfiability: complexity and axiomatization. Theoret. Comput. Sci. 394(1–2), 84–111 (2008). Scholar
  5. 5.
    Damaschke, P.: Parameterized algorithms for double hypergraph dualization with rank limitation and maximum minimal vertex cover. Discret. Optim. 8(1), 18–24 (2011). Scholar
  6. 6.
    Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation. Springer, New York (2005). Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999). Scholar
  8. 8.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995). Scholar
  9. 9.
    Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional horn theories. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 197–211. Springer, Heidelberg (2003). Scholar
  10. 10.
    Elbassioni, K.M., Rauf, I., Ray, S.: Enumerating minimal transversals of geometric hypergraphs. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, Toronto, Ontario, Canada, 10–12 August (2011)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). Scholar
  12. 12.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996). Scholar
  13. 13.
    Gottlob, G., Malizia, E.: Achieving new upper bounds for the hypergraph duality problem through logic. SIAM J. Comput. 47(2), 456–492 (2018). Scholar
  14. 14.
    Gottlob, G.: Deciding monotone duality and identifying frequent itemsets in quadratic logspace. In: Hull, R., Fan, W. (eds.) PODS, pp. 25–36. ACM (2013).
  15. 15.
    Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, hypergraph transversals, and machine learning. In: Mendelzon, A.O., Özsoyoglu, Z.M. (eds.) PODS 1997, pp. 209–216. ACM Press (1997).
  16. 16.
    Guzzo, A., Moccia, L., Saccà, D., Serra, E.: Solving inverse frequent itemset mining with infrequency constraints via large-scale linear programs. ACM Trans. Knowl. Discov. Data 7(4), 18:1–18:39 (2013). Scholar
  17. 17.
    Kavvadias, D., Papadimitriou, C.H., Sideri, M.: On horn envelopes and hypergraph transversals. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993). Scholar
  18. 18.
    Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs. Theor. Comput. Sci. 382(2), 139–150 (2007). Scholar
  19. 19.
    Liu, G., Li, J., Wong, L.: A new concise representation of frequent itemsets using generators and a positive border. Knowl. Inf. Syst. 17(1), 35–56 (2008). Scholar
  20. 20.
    Mielikainen, T.: On inverse frequent set mining. In: Proceedings of 2nd Workshop on Privacy Preserving Data Mining, PPDM 2003, pp. 18–23. IEEE Computer Society, Washington, DC (2003)Google Scholar
  21. 21.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  22. 22.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987). Scholar
  23. 23.
    Saccà, D., Serra, E.: On line appendix to: number of minimal hypergraph transversals and complexity of IFM with infrequency: high in theory, but often not so much in practice! Version of 12 September 2019.
  24. 24.
    Saccà, D., Serra, E., Guzzo, A.: Count constraints and the inverse OLAP problem: definition, complexity and a step toward aggregate data exchange. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 352–369. Springer, Heidelberg (2012). Scholar
  25. 25.
    Saccá, D., Serra, E., Rullo, A.: Extending inverse frequent itemsets miningto generate realistic datasets: complexity, accuracy and emerging applications. Data Min. Knowl. Discov. 33, 1736–1774 (2019). Scholar
  26. 26.
    Vardi, M.Y.: Lost in math? Commun. ACM 62(3), 7 (2019). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CalabriaRendeItaly
  2. 2.Boise State UniversityBoiseUSA

Personalised recommendations