PRONOM: Proof-Search and Countermodel Generation for Non-normal Modal Logics

  • Tiziano Dalmonte
  • Sara Negri
  • Nicola Olivetti
  • Gian Luca PozzatoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


We present PRONOM, a theorem prover and countermodel generator for non-normal modal logics. PRONOM implements some labelled sequent calculi recently introduced for the basic system \(\mathbf {E}\) and its extensions with axioms M, N, and C based on bi-neighbourhood semantics. PRONOM is inspired by the methodology of Open image in new window and is implemented in Prolog. When a modal formula is valid, then PRONOM computes a proof (a closed tree) in the labelled calculi having that formula as a root in the labelled calculi, otherwise PRONOM is able to extract a model falsifying it from an open, saturated branch. The paper shows some experimental results, witnessing that the performances of PRONOM are promising.


Non-normal modal logics Labelled sequent calculi Theorem proving 


  1. 1.
    Alenda, R., Olivetti, N., Pozzato, G.L.: CSL-lean: a theorem-prover for the logic of comparative concept similarity. Electron. Notes Theoret. Comput. Sci. (ENTCS) 262, 3–16 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’. J. Appl. Non-Classical Logics 26(3), 173–192 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)Google Scholar
  4. 4.
    Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: bi-neighbourhood semantics and its labelled calculi. In: Bezhanishvili, G., D’Agostino, G., Metcalfe, G., Studer, T. (eds.) Advances in Modal Logic 12, Proceedings of the 12th Conference on Advances in Modal Logic, 27–31 August 2018, Held in Bern, Switzerland, pp. 159–178. College Publications (2018)Google Scholar
  5. 5.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux for KLM preferential and cumulative logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005). Scholar
  6. 6.
    Giordano, L., Gliozzi, V., Pozzato, G.L.: KLMLean 2.0: a theorem prover for KLM logics of nonmonotonic reasoning. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 238–244. Springer, Heidelberg (2007). Scholar
  7. 7.
    Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L., Vitalis, Q.: VINTE: an implementation of internal calculi for Lewis’ logics of counterfactual reasoning. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 149–159. Springer, Cham (2017). Scholar
  8. 8.
    Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for classical modal logics. J. Automated Reason. 28(2), 143–171 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hansen, H.: Tableau games for coalition logic and alternating-time temporal logic-theory and implementation. Master’s thesis, University of Amsterdam (2004)Google Scholar
  10. 10.
    Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak modal systems. Studia Logica 65, 121–145 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lellmann, B.: Countermodels for non-normal modal logics via nested sequents. In: Bezhanishvili, N., Venema, Y. (eds.) SYSMICS2019 - Booklet of Abstracts, pp. 107–110. Language and Computation University of Amsterdam, Institute for Logic (2019)Google Scholar
  12. 12.
    Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results. IfCoLog J. Log. Appl. 4(4), 1241–1286 (2017) Google Scholar
  13. 13.
    Olivetti, N., Pozzato, G.L.: CondLean: a theorem prover for conditional logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 264–270. Springer, Heidelberg (2003). Scholar
  14. 14.
    Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger conditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332. Springer, Heidelberg (2005). Scholar
  15. 15.
    Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: CondLean and GoalDuck. J. Appl. Non-Classical Logics 18, 427–473 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). Scholar
  17. 17.
    Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9, 109–125 (2015)CrossRefGoogle Scholar
  18. 18.
    Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017). Scholar
  19. 19.
    Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1), 149–166 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ross, A.: Imperatives and logic. Theoria 7, 53–71 (1941)Google Scholar
  21. 21.
    Vardi, M.Y.: On epistemic logic and logical omniscience. In: Theoretical Aspects of Reasoning About Knowledge, pp. 293–305. Elsevier (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, Université de Toulon, CNRS, LISMarseilleFrance
  2. 2.Department of PhilosophyUniversity of HelsinkiHelsinkiFinland
  3. 3.Dipartimento di InformaticaUniversitá degli Studi di TorinoTurinItaly

Personalised recommendations