Advertisement

The OntoREA© Accounting and Finance Model: Inclusion of Future Uncertainty

  • Walter S. A. SchwaigerEmail author
  • Aqif Nasufi
  • Natalia Kryvinska
  • Christian Fischer-Pauzenberger
  • Ömer Faruk Dural
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 369)

Abstract

The OntoREA© accounting and finance model [1] indicates already in its name a fundamental distinction, i.e. the distinction between the accounting related backward looking perspective into the past and the finance related forward looking perspective into the future. Accordingly, in accounting current economic events are recorded and persisted and in finance future related commitments are addressed. Concerning the completeness of accounting and finance concepts there is an asymmetry in the OntoREA© model. The accounting concepts are completely covered, whereas in the coverage of the forward looking finance perspective one main deficiency exists: The uncertainty surrounding the forward looking perspective is not specified.

In this article the problem of the missing uncertainty representation in the OntoREA© accounting and finance model is explicitly addressed. The novel approach consists in directly linking uncertainty to commitments. By conceptualizing uncertainty according to the stochastic concepts that underlie the option pricing [2, 3, 4] and the intertemporal equilibrium pricing theory [5], the missing representation is solved. Furthermore, the stochastic concepts have a precise ontological meaning [6, 7]. Hence, the extension of the current model with the proposed uncertainty representation gives a well-founded stochastic model of the accounting and finance domain.

Keywords

REA business ontology OntoREA© accounting and finance model Uncertainty representation Stochastic process concept UFO-B 

References

  1. 1.
    Fischer-Pauzenberger, C., Schwaiger, W.S.A.: The OntoREA© accounting and finance model: ontological conceptualization of the accounting and finance domain. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 506–519. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69904-2_38CrossRefGoogle Scholar
  2. 2.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637 (1973)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Merton, R.C.: Theory of rational theory option pricing. Bell J. Econ. 4, 141–183 (1973)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Merton, R.C.: An intertemporal capital asset pricing model. Econometrica 41, 867 (1973)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41924-9_27CrossRefGoogle Scholar
  7. 7.
    Guarino, N.: On the semantics of ongoing and future occurrence identifiers. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 477–490. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69904-2_36CrossRefGoogle Scholar
  8. 8.
    Guizzardi, G.: Ontological Foundations for Structural Conceptual Model (2005). http://doc.utwente.nl/50826
  9. 9.
    Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the extended-REA enterprise information architecture. Int. J. Account. Inf. Syst. 3, 1–16 (2002)CrossRefGoogle Scholar
  10. 10.
    Geerts, G.L., McCarthy, W.E.: Policy level specifications in REA enterprise information systems. J. Inf. Syst. 20, 37–63 (2006)Google Scholar
  11. 11.
    Schwaiger, W.S.A.: The REA accounting model: enhancing understandability and applicability. In: Proceedings of the 34th International Conference on Conceptual Modeling ER 2015, vol. 9381, pp. 566–573 (2015)CrossRefGoogle Scholar
  12. 12.
    Fischer-Pauzenberger, C., Schwaiger, W.S.A.: The OntoREA accounting model: ontology-based modeling of the accounting domain. Complex Syst. Inform. Model. Q. 11, 20–37 (2017)CrossRefGoogle Scholar
  13. 13.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5, 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Ontology Project: UFO-A SpecificationGoogle Scholar
  15. 15.
    Fischer-Pauzenberger, C., Schwaiger, W.S.A.: The OntoREA© accounting and finance model: a retroactive DSRM demonstration evaluation. In: Poels, G., Gailly, F., Serral Asensio, E., Snoeck, M. (eds.) PoEM 2017. LNBIP, vol. 305, pp. 81–95. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70241-4_6CrossRefGoogle Scholar
  16. 16.
    Fischer-Pauzenberger, C., Schwaiger, W.S.A.: OntoREA© accounting and finance model: hedge portfolio representation of derivatives. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 372–382. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02302-7_24CrossRefGoogle Scholar
  17. 17.
    Schwaiger, W.S.A., Abmayer, M.: Accounting and management information systems - a semantic integration. In: 15th International Conference on Information Integration and Web-based Application & Services, pp. 346–352 (2013)Google Scholar
  18. 18.
    Smith, J.E., Nau, R.F.: Valuing risky projects: option pricing theory and decision analysis. Manag. Sci. 41, 795–816 (1995)CrossRefGoogle Scholar
  19. 19.
    Brandão, L.E., Dyer, J.S., Hahn, W.J.: Using binomial decision trees to solve real-option valuation problems. Decis. Anal. 2, 69–88 (2005)CrossRefGoogle Scholar
  20. 20.
    Bertsekas, D.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific, Belmont (2005)zbMATHGoogle Scholar
  21. 21.
    Bertsekas, D.: Dynamic Programming and Optimal Control -, vol. II. Athena Scientific, Belmont (2011)Google Scholar
  22. 22.
    Keane, M.P., Wolpin, K.I.: The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: monte carlo evidence. Rev. Econ. Stat. 76, 648–672 (1994)CrossRefGoogle Scholar
  23. 23.
    Denault, M., Simonato, J.G., Stentoft, L.: A simulation-and-regression approach for stochastic dynamic programs with endogenous state variables. Comput. Oper. Res. 40, 2760–2769 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, Heidelberg (1991).  https://doi.org/10.1007/978-1-4612-0949-2CrossRefzbMATHGoogle Scholar
  25. 25.
    Dural, Ö.F., Nasufi, A.: Produktionsplanung und-steuerung unter Unsicherheit: design und implementierung in integrierten ERP-Systemen. Master thesis, TU Wien (2013)Google Scholar
  26. 26.
    Fellner, D.: Modellbasierte Planung und Steuerung unter Unsicherheit. Master thesis, TU Wien (2010)Google Scholar
  27. 27.
    Church, K.S., Smith, R.E.: An extension of the REA framework to support balanced scorecard information requirements. J. Inf. Syst. 21, 1 (2007)Google Scholar
  28. 28.
    Schwaiger, W.S.A.: REA business management ontology: conceptual modeling of accounting, finance and management control. In: CAiSE Forum, pp. 41–48 (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Walter S. A. Schwaiger
    • 1
    Email author
  • Aqif Nasufi
    • 1
  • Natalia Kryvinska
    • 1
  • Christian Fischer-Pauzenberger
    • 1
  • Ömer Faruk Dural
    • 1
  1. 1.Institute of Management ScienceTechnische Universität WienViennaAustria

Personalised recommendations