Advertisement

Applications of Nanometals in Cutaneous Infections

  • Gerson Nakazato
  • Audrey Alesandra Stinghen Garcia Lonni
  • Luciano Aparecido Panagio
  • Larissa Ciappina de Camargo
  • Marcelly Chue Gonçalves
  • Guilherme Fonseca Reis
  • Milena Menegazzo Miranda-Sapla
  • Fernanda Tomiotto-Pellissier
  • Renata Katsuko Takayama KobayashiEmail author
Chapter

Abstract

Nanoparticles have been largely applied in industrial fields, engineering, and medicine, and are considered as efficient biotechnology tool. Metallic nanoparticles are incorporated into different material with biological properties mainly as antimicrobial. Nanoparticles are the particles with size between 1 and 100 nm being used to different goals due to the beneficial properties. According to the size, NPs can be selected for each function. NPs smaller than 4 nm can usually penetrate and permeate intact skin and reach deeper organs; however, NPs greater than 45 nm cannot penetrate or permeate into the skin. Nanometals have a great potential to different applications in medicine, due to their properties and features. One of these applications is on cutaneous infections, such as acne vulgaris, mycoses, cutaneous leishmaniasis, and wound, which will be discussed here in detail.

Keywords

Antimicrobial AgNP AuNP Acne vulgaris Mycoses Cutaneous leishmaniasis Wound 

References

  1. Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, Yuan Q (2015) Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv 5:73793–73806CrossRefGoogle Scholar
  2. Ahmad A, Wei Y, Syed F, Khan S, Khan GM, Tahir K, Khan AU, Raza M, Khan FU, Yuan Q (2016a) Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol B Biol 161:17–24CrossRefGoogle Scholar
  3. Ahmad A, Wei Y, Syed F, Tahir K, Taj R, Khan AU, Hameed MU, Yuan Q (2016b) Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog 99:271–281PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmad A, Wei Y, Ullah S, Shah SI, Nasir F, Shah A, Iqbal Z, Tahir K, Khan UA, Yuan Q (2017) Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microb Pathog 110:304–312PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahmadi M, Adibhesami M (2017) The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharmaceut Res 16(2):661–669Google Scholar
  6. Akturk O, Kismet K, Yasti AC, Kuru S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl 31(2):283–301PubMedCrossRefPubMedCentralGoogle Scholar
  7. Allahverdiyev A, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine 6:2705–2714PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amaral AC, Saavedra PH, Souza ACO, de Melo MT, Tedesco AC, Morais PC, Soares Felipe MS, Bocca AL (2019) Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces 174:409–415PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J (2014) Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug 16 resistant strains of Pseudomonas aeruginosa. J Basic Microbiol 54(7):688–699PubMedCrossRefPubMedCentralGoogle Scholar
  10. Auyeung A, Casillas-Santana MÁ, Martínez-Castañón GA, Slavin YN, Zhao W, Asnis J, Hafeli UO, Bach H (2017) Effective control of molds using a combination of nanoparticles. PLoS One 12(1):e0169940PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baiocco P, Ilari A, Ceci P, Orsini S, Gramiccia M, Di Muccio T, Colotti G (2011) Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med Chem Lett 2:230–233PubMedCrossRefPubMedCentralGoogle Scholar
  12. Baranwal A, Chiranjivi AK, Kumar A, Dubey VK, Chandra P (2018) Design of commercially comparable nanotherapeutic agent against human disease-causing parasite, Leishmania. Sci Rep 8:8814PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barboza-Filho CG, Cabrera FC, dos Santos RJ, de Saja Saez JA, Job AE (2012) The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. Exp Parasitol 130:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  14. Benelli G (2018) Gold nanoparticles—against parasites and insect vectors. Acta Trop 178:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  15. Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C (2017) Nanoparticle-based dressing: the future of wound treatment? Trends Biotechnol 35(8):770–784PubMedCrossRefPubMedCentralGoogle Scholar
  16. Biasi-Garbin RP, Otaguiri ES, Morey AT, Silva MF, Morguete AEB, Contreras CCL, Kian D, Perugini MRE, Nakazato G, Durán N, Nakamura CV, Yamauchi LM, Yamada-Ogatta SF (2015) Effect of eugenol against Streptococcus agalactiae and synergistic interaction with biologically produced silver nanoparticles. Evid Based Complement Alternat Med 2015:861497Google Scholar
  17. Bocate KP, Reis GF, de Souza PC, Oliveira AG, Durán N, Nakazato G, Furlaneto MC, Almeida RSC, Panagio LA (2019) Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol 291:79–86PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases estimate precision. J Fungi 3(4):57CrossRefGoogle Scholar
  19. Boonkaew B, Suwanpreuksa P, Cuttle L, Barber PM, Supaphol P (2014) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 131(9):1CrossRefGoogle Scholar
  20. Brito ACD, Bittencourt MDJS (2018) Chromoblastomycosis: an etiological, epidemiological, clinical, diagnostic, and treatment update. An Bras Dermatol 93(4):495–506PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cantwell MG, Wilson BA, Zhu J, Wallace GT, King JW, Olsen CR, Burgess RM, Smith JP (2010) Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: evidence of preservation and accumulation. Chemosphere 78:347–352PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:12PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT (2012) Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine 7:4409PubMedPubMedCentralGoogle Scholar
  24. Cho Y-M, Mizuta Y, Akagi J, Toyoda T, Sone M, Ogawa K (2018) Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 31:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cordova G, Attwood S, Gaikwad R, Gu F, Leonenko Z (2014) Magnetic force microscopy characterization of superparamagnetic iron oxide nanoparticles (SPIONs). Nano Biomed Eng 6(1):31–39CrossRefGoogle Scholar
  26. Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy-challenges and opportunities. Clin Microbiol Infect 17:1478–1483PubMedCrossRefPubMedCentralGoogle Scholar
  27. DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dessinioti C, Katsambas A (2017) Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol 35(2):163–167PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:8–11CrossRefGoogle Scholar
  30. Dolat E, Rajabi O, Salarabadi SS, Yadegari-Dehkordi S, Sazgarnia A (2015) Silver nanoparticles and electroporation: their combinational effect on Leishmania major. Bioelectromagnetics 36:586–596PubMedCrossRefPubMedCentralGoogle Scholar
  31. dos Santos CA, Seckler MM, Ingle AP, Gupt I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944PubMedCrossRefPubMedCentralGoogle Scholar
  32. Durán N, Marcato PD, Alves OL, Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(8):1–7Google Scholar
  33. Durán N, Marcato PD, de Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  34. Durán N, Nakazato G, Seabra AB (2016a) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100(15):6555–6570PubMedCrossRefPubMedCentralGoogle Scholar
  35. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016b) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ebrahimnejad H, Motaghi S (2018) Influence of nanomaterials on human health. In: Kumar V, Dasgupta N, Ranjan S (eds) Nanotoxicology: toxicity evaluation, risk assessment and management. CRC, Boca Raton, FL, p 228Google Scholar
  37. Elahi N, Mehdi K, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556PubMedCrossRefPubMedCentralGoogle Scholar
  38. El-Khadragy M, Alolayan E, Metwally D, El-Din M, Alobud S, Alsultan N, Alsaif S, Awad M, Abdel Moneim A (2018) Clinical efficacy associated with enhanced antioxidant enzyme activities of silver nanoparticles biosynthesized using moringa oleifera leaf extract, against cutaneous leishmaniasis in a murine model of Leishmania major. Int J Environ Res Public Health 15(5):1037PubMedCentralCrossRefGoogle Scholar
  39. Fanti JR, Pelissier F, Cataneo AHD, Andrade CGTJ, Panis C, Rodrigues JHS, Wowk KP, Kuczera D, Nazareth I, Nakamura CV, Nakazato G, Durán N, Pavanelli WR, Costa IC (2018) Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 178:46–54PubMedCrossRefPubMedCentralGoogle Scholar
  40. Feng Q, Wu J, Chen G (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gélvez APC, Farias LHS, Pereira VS, da Silva ICM, Costa AC, Dias CGBT, Costa RMR, da Silva SHM, Rodrigues APD (2018) Biosynthesis, characterization and leishmanicidal activity of a biocomposite containing AgNPs-PVP-glucantime. Nanomedicine 13:373–390PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, Pal JK, Chopade BA (2015) Dioscorea bulbifera mediated synthesis of novel Au core Ag shell nanoparticles with potent antibiofilm and antileishmanial activity. J Nanomater 2015:1–12CrossRefGoogle Scholar
  43. Gräser Y, Monod M, Bouchara JP, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, Packeu A, Chaturvedi V, de Hoog S (2018) New insights in dermathophyte research. Med Mycol 56(suppl_1):2–9PubMedCrossRefPubMedCentralGoogle Scholar
  44. Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2014) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8(3):172–178PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M (2016) New approaches from nanomedicine for treating Leishmaniasis. Chem Soc Rev 1:1–28Google Scholar
  47. Harish KK, Nagasamy V, Himangshu B, Anuttam K (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775Google Scholar
  48. Hasany SF, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2(6):148–158CrossRefGoogle Scholar
  49. Herman A, Herman AP (2014) Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action. J Nanosci Nanotechnol 14(1):946–957PubMedCrossRefPubMedCentralGoogle Scholar
  50. Horsburgh CR Jr, Cannady PB Jr, Kirkpatrick CH (1983) Treatment of fungal infections in the bones and joints with ketoconazole. J Infect Dis 147(6):1064–1069PubMedCrossRefPubMedCentralGoogle Scholar
  51. Isaac-Márquez AP, Talamás-Rohana P, Galindo-Sevilla N, Gaitan-Puch SE, Díaz-Díaz NA, Hernández-Ballina GA, Lezama-Dávila CM (2018) Decanethiol functionalized silver nanoparticles are new powerful leishmanicidals in vitro. World J Microbiol Biotechnol 34(3):38PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jabir MS, Taha AA, Sahib UI (2018) Linalool loaded on glutathione-modified gold nanoparticles: a drug delivery system for a successful antimicrobial therapy. Artif Cells Nanomed Biotechnol 46(sup2):345–355PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRefGoogle Scholar
  54. Jebali A, Kazemi B (2013) Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol In Vitro 27:1896–1904PubMedCrossRefPubMedCentralGoogle Scholar
  55. Joshi PA, Bonde SR, Gaikwad SC, Gade AK, Abd-Elsalam K, Rai MK (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and it’s efficacy against bacteria and Malassezia furfur. J Bionanosci 7(4):378–385CrossRefGoogle Scholar
  56. Jurairattanaporn N, Chalermchai T, Ophaswongse S, Udompataikul M (2017) Comparative trial of silver nanoparticle gel and 1% clindamycin gel when use in combination with 2.5% benzoyl peroxide in patients with moderate acne vulgaris. J Med Assoc Thai 100(1):78–85PubMedPubMedCentralGoogle Scholar
  57. Kalangi SK, Dayakar A, Gangappa D, Sathyavathi R, Maurya RS, Narayana Rao D (2016) Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Exp Parasitol 170:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kamatou GPP, Viljoen AM (2008) Linalool—a review of a biologically active compound of commercial importance. Nat Prod Commun 3(7):1183–1192Google Scholar
  59. Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang WN, Ravi N, Biswas P (2016) Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro 37:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484Google Scholar
  61. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J Microbiol Biotechnol 39(1):77–85Google Scholar
  62. Kim E, Lee JH, Kim JK, Lee GH, Ahn K, Park JD, Yu IJ (2015) Case study on risk evaluation of silver nanoparticle exposure from antibacterial sprays containing silver nanoparticles. J Nanomater 346586:1–8Google Scholar
  63. Kim TS, Cha JR, Gong MS (2017) Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate. Textile Res J 88(7):766–776CrossRefGoogle Scholar
  64. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 1(3):340–350PubMedCrossRefPubMedCentralGoogle Scholar
  65. Koga T, Matsuda T, Matsumoto T, Furue M (2003) Therapeutic approaches to subcutaneous mycoses. Am J Clin Dermatol 4(8):537–543PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574CrossRefGoogle Scholar
  67. Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72(2):310–322PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130(4):489–493PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lee J, Park EY, Lee J (2014) Non-toxic nanoparticles from phytochemicals: preparation and biomedical application. Bioprocess Biosyst Eng 37:983–989PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lengke M, Southam G (2006) Bioaccumulation of gold by sulphate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim Cosmochim Acta 70(14):3646–3661CrossRefGoogle Scholar
  71. Lima Barros MB, Almeida Paes R, Schubach AO (2011) Sporothrix schenckii and Sporotrichosis. Clin Microbiol Rev 24(4):633–654CrossRefGoogle Scholar
  72. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924PubMedCrossRefPubMedCentralGoogle Scholar
  73. Longhi C, Santos JP, Morey AT, Marcato PD, Durán N, Pinge-Filho P, Nakazato G, Yamada-Ogatta SF, Yamauchi LM (2016) Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med Mycol 54:428–432PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lopes LCS, Brito LM, Bezerra TT, Gomes KN, Carvalho FADA, Chaves MH, Cantanhêde W (2018) Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An Acad Bras Cienc 90:2679–2689PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mahmoud NN, Alkilany AM, Khalil EA, Gal-Bakri A (2017) Antibacterial activity of gold nanorods against Staphylococcus aureus and Propionibacterium acnes: misinterpretations and artifacts. Int J Nanomedicine 12:7311–7322PubMedPubMedCentralCrossRefGoogle Scholar
  76. Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55CrossRefGoogle Scholar
  77. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME et al. (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mandava K (2017) Biological and non-biological synthesis of metallic nanoparticles: scope for current pharmaceutical research. Indian J Pharm Sci 79(4):501–512CrossRefGoogle Scholar
  79. Marcato P, Durán N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8:2216–2229PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mathur P, Jha S, Ramteke S, Jain NK (2018) Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol 46:115–126PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mayelifar K, Taheri AR, Rajabi O, Sazgarnia A (2015) Ultraviolet B efficacy in improving antileishmanial effects of silver nanoparticles. Iran J Basic Med Sci 18(7):677–683PubMedPubMedCentralGoogle Scholar
  82. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777PubMedPubMedCentralCrossRefGoogle Scholar
  83. Melnik BC (2018) Acne vulgaris: the metabolic syndrome of the pilosebaceous follicle. Clin Dermatol 36(1):29–40PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289PubMedPubMedCentralCrossRefGoogle Scholar
  85. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330PubMedCrossRefPubMedCentralGoogle Scholar
  86. Monowar T, Rahman M, Bhore S, Raju G, Sathasivam K (2018) Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12):3220PubMedCentralCrossRefGoogle Scholar
  87. Nakazato G, Kobayashi RKT, Seabra AB, Durán N (2016) Use of nanoparticles as a potential antimicrobial for food packaging (ISBN 9780128043035). Food preservation, vol 2, 1st edn. Elsevier, Amsterdam, pp 413–447Google Scholar
  88. Nam G, Rangasamy S, Purushothaman B, Song JM (2015) The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol 5(23):1–14Google Scholar
  89. Ovais M, Nadhman A, Khalil AT, Raza A, Khuda F, Sohail MF, Islam NU, Sarwar HS, Shahnaz G, Ahmad I, Saravanan M, Shinwari ZK (2017) Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine 12(24):2807–2819PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ovais M, Khalil AT, Raza A, Islam NU, Ayaz M, Saravanan M, Ali M, Ahmad I, Shahid M, Shinwari ZK (2018) Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol 102:4393–4408PubMedCrossRefPubMedCentralGoogle Scholar
  91. Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R (2014) Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnol 12(2):1–7Google Scholar
  92. Pollack CV Jr, Amin A, Ford WT Jr, Finley R, Kaye KS, Nguyen HH, Rybak MJ, Talan D (2015) Acute bacterial skin and skin structure infections (ABSSSI): practice guidelines for management and care transitions in the emergency department and hospital. J Emerg Med 48(4):508–519PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pourali P, Yahyae B (2016) Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J Trace Elem Med Biol 34:22–31PubMedCrossRefPubMedCentralGoogle Scholar
  95. Pulit-Prociak J, Banach M (2016) Silver nanoparticles—a material of the future…? Open Chem 14:76–91CrossRefGoogle Scholar
  96. Queiroz-Telles F, Nucci M, Colombo AL, Tobón A, Restrepo A (2011) Mycoses of implantation in Latin America: an overview of epidemiology, clinical manifestations, diagnosis and treatment. Med Mycol 49(3):225–236PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  98. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98(5):1951–1961PubMedCrossRefPubMedCentralGoogle Scholar
  99. Rónavári A, Igaz N, Gopisetty MK, Szerencsés B, Kovács D, Papp C, Vágvölgyi C, Boros IM, Kónya Z, Kiricsi M, Pseiffer I (2018) Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 13:695–703PubMedPubMedCentralCrossRefGoogle Scholar
  100. Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sathishkumar P, Preethi J, Vijayan R, Yusoff ARMY, Ameend F, Suresh S, Balagurunathan R, Palvannan T (2016) Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthetised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B Biol 163:69–76CrossRefGoogle Scholar
  102. Sazgarnia A, Taheri AR, Soudmand S, Parizi AJ, Rajabi O, Darbandi MS (2013) Antiparasitic effects of gold nanoparticles with microwave radiation on promastigotes and amastigotes of Leishmania major. Int J Hyperthemia 29:79–86CrossRefGoogle Scholar
  103. Scandorieiro S, Camargo LC, Contreras CA, Yamada-Ogatta SF, Nakamura CV, de Oliveira AG, Andrade CG, Duran N, Nakazato G, Kobayashi RKT (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug resistant bacterial strains. Front Microbiol 7:760PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB, Dakshinamurthy R (2014) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19:1320–1344CrossRefGoogle Scholar
  105. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6(4):71PubMedCentralCrossRefGoogle Scholar
  106. Singh M, Kuma M, Kalaivani R, Manikandan S, Kumaraguru AK (2013) Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36(4):407–415PubMedCrossRefPubMedCentralGoogle Scholar
  107. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav J (2014) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol 12:40CrossRefGoogle Scholar
  108. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65CrossRefGoogle Scholar
  109. Steverding D (2017) The history of leishmaniasis. Parasit Vectors 10:82PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tawfik AA, Noaman I, El-Elsayyad H, El-Mashad N, Soliman M (2016) A study of the treatment of cutaneous fungal infection in animal model using photoactivated composite of methylene blue and gold nanoparticle. Photodiagnosis Photodyn Ther 15:59–69PubMedCrossRefPubMedCentralGoogle Scholar
  111. Tazima MFGS, Vicente YAMVA, Moriya T (2008) Biologia da ferida e cicatrização. Med Ribeirão Preto 41(3):259–264Google Scholar
  112. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56(suppl 1):10–25CrossRefGoogle Scholar
  113. Ul (2019) U.S. FDA bans use of Triclosan in health care antiseptics. https://psi.ul.com/en/resources/article/u.s.-fda-bans-use-of-triclosan-in-health-care-antiseptics/. Accessed 9 Jan 2019
  114. Ullah I, Cosar G, Abamor ES, Bagirova M, Shinwari ZK, Allahverdiyev AM (2018) Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 8:98PubMedPubMedCentralCrossRefGoogle Scholar
  115. Vowden K, Vowden P (2017) Wound dressings: principles and practice. Surgery 35(9):489–494Google Scholar
  116. Wang R, Yao X, Li R (2019) Mycetoma in China: a case report and review of the literature. Mycopathologia 184:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  117. Warriner R, Burrell R (2005) Infection and the chronic wound: a focus on silver. Adv Skin Wound Care 18:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wei L, Lu J, Xu H, Patel A, Chen Z, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One 12(9):e0185554PubMedPubMedCentralCrossRefGoogle Scholar
  120. WHO (2016) Leishmaniasis in high-burden countries: an epidemiological update based on data reported in 2014. Wkly Epidemiol Rec 91:285–296Google Scholar
  121. World Health Organization (WHO) (2018) Leishmaniasis [WWW Document]Google Scholar
  122. Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(4):11465–11486PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang Y, Shareena Dasari TP, Deng H, Yu H (2015) Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health C 33(3):286–327CrossRefGoogle Scholar
  124. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10(1):19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gerson Nakazato
    • 1
  • Audrey Alesandra Stinghen Garcia Lonni
    • 2
  • Luciano Aparecido Panagio
    • 1
  • Larissa Ciappina de Camargo
    • 1
  • Marcelly Chue Gonçalves
    • 1
  • Guilherme Fonseca Reis
    • 1
  • Milena Menegazzo Miranda-Sapla
    • 3
  • Fernanda Tomiotto-Pellissier
    • 4
  • Renata Katsuko Takayama Kobayashi
    • 1
    Email author
  1. 1.Department of MicrobiologyBiological Sciences Center, Universidade Estadual de LondrinaLondrinaBrazil
  2. 2.Department of Pharmaceutical SciencesHealth Sciences Center, Universidade Estadual de LondrinaLondrinaBrazil
  3. 3.Department of Pathological SciencesBiological Sciences Center, Universidade Estadual de LondrinaLondrinaBrazil
  4. 4.Carlos Chagas Institute (ICC), FiocruzCuritibaBrazil

Personalised recommendations