Advertisement

Combination Therapy Using Metal Nanoparticles for Skin Infections

  • Debalina Bhattacharya
  • Rituparna Saha
  • Mainak Mukhopadhyay
Chapter

Abstract

Nowadays skin infections have emerged as a serious health problem worldwide. Over the years research has been conducted to develop new therapeutic agents for the treatment and prevention of various skin infections. Frequent use of conventional antibiotics and drugs increases multi-drug resistance. Therefore, it requires a continuous need for newer and more effective therapies. Nanotechnology is the most promising and novel area in the field of medicine for safe and targeted drug delivery to combat various skin infections. Nanomaterials especially metallic nanoparticles are increasingly utilized in dermatology and cosmetology due to their unique properties such as small size, shape, and high surface-area-to-volume ratio. Metallic nanoparticles have the ability to interact with the cell membrane and cell wall of the pathogens and can easily penetrate into the skin. Therefore, metal-based nanoparticles can effectively combine with conventional drugs to develop successful combination therapies. The aim of this chapter is to describe the combination therapy of metallic nanoparticles for the treatment of various skin infections.

Keywords

Combination therapy Dermatology Nanomaterials Metal nanoparticles Skin infections 

Nomenclature

AuNPs

Gold nanoparticles

BCCs

Basal cell carcinomas

CFU

Colony-forming unit

CL

Cutaneous leishmaniasis

CuO NPs

Copper oxide nanoparticles

EPR

Permeability and retention effect

EPSD

Epidermal parasitic skin diseases

HSV

Herpes simplex virus

IDs

Infectious diseases

MDR

Multi-drug resistance

NMSC

Non-melanocytic skin cancer

NPs

Nanoparticles

NRs

Nanorod

ROS

Reactive oxygen species

SC

Stratum corneum

SPIONs

Superparamagnetic iron oxide nanoparticles

SSTIs

Skin structure infections

TiO2

Titanium dioxide

References

  1. Abeylath SC, Turos E (2008) Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opin Drug Deliv 5:931–949PubMedCrossRefGoogle Scholar
  2. Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:637858.  https://doi.org/10.1155/2014/637858CrossRefGoogle Scholar
  3. Ahmad J, Dwivedi S, Alarifi S, Al-Khedhairy AA, Musarrat J (2012) Use of-galactosidase (lacZ) gene-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutat Res 747:246–252PubMedCrossRefGoogle Scholar
  4. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6:933–940PubMedCrossRefGoogle Scholar
  5. Allaker RP, Ren G (2008) Potential impact of nanotechnology on the control of infectious disease. Trans R Soc Trop Med Hyg 102:1–2PubMedCrossRefGoogle Scholar
  6. Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads—is it actually a problem? Acta Orthop 79:302–307PubMedCrossRefGoogle Scholar
  7. Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla DP (2012) Therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res 96:363PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anwar MF, Yadav D, Jain S, Kapoor S, Rastogi S, Arora I, Samim M (2016) Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff. Int J Nanomedicine 6:147–161Google Scholar
  9. Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337PubMedCrossRefGoogle Scholar
  10. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram positive and -negative bacterial strains. Small 8:3326–3337CrossRefGoogle Scholar
  11. Azubel M, Koivisto J, Malola S, Bushnell D, Hura GL, Koh AL, Tsunoyama H, Tsukuda T, Pettersson M, Häkkinen H, Kornberg RD (2014) Electron microscopy of gold nanoparticles at atomic resolution. Science 345:909–912PubMedPubMedCentralCrossRefGoogle Scholar
  12. Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8):2034–2042PubMedCrossRefGoogle Scholar
  13. Baram-Pinto D, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 6:1044PubMedCrossRefGoogle Scholar
  14. Bassetti M, Castaldo N, Carnelutti A, Peghin M, Giacobbe DR (2019) Tedizolid phosphate for the treatment of acute bacterial skin and skin-structure infections: an evidence-based review of its place in therapy. Core Evid 14:31–40PubMedPubMedCentralCrossRefGoogle Scholar
  15. Betts JW, Hornsey M, La Ragione RM (2018) Novel antibacterials: alternatives to traditional antibiotics. Adv Microb Physiol 73:123–169PubMedCrossRefGoogle Scholar
  16. Bhattacharya D, Samanta S, Mukherjee A, Santra CR, Ghosh AN, Neyogi SK, Karmakar P (2012) Antibacterial activities of poly ethylene glycol, tween 80 and sodium dodecyl sulphate coated silver nanoparticles in normal and multi-drug resistant bacteria. J Nano Sci Nanotechnol 12:1–9CrossRefGoogle Scholar
  17. Bhattacharya D, Santra CR, Ghosh AN, Karmakar P (2014) Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. J Biomed Nanotechnol 10:707–716PubMedCrossRefGoogle Scholar
  18. Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S (2019) Phyto-mediated synthesis of zinc oxide nanoparticles of Berberisaristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Korean J Couns Psychother 102:212–220Google Scholar
  19. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174PubMedCrossRefGoogle Scholar
  20. Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24PubMedCrossRefGoogle Scholar
  21. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074PubMedCrossRefGoogle Scholar
  22. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  23. Clebak KT, Malone MA (2018) Skin infections. Prim Care 45:433–454CrossRefGoogle Scholar
  24. Crissey JT (1998) Common dermatophyte infections. A simple diagnostic test and current management. Postgrad Med 103:191–202PubMedCrossRefGoogle Scholar
  25. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154PubMedCrossRefGoogle Scholar
  26. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B Biointerfaces 101:430–433PubMedCrossRefGoogle Scholar
  27. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2670PubMedPubMedCentralCrossRefGoogle Scholar
  28. El-Gohary M, van Zuuren EJ, Fedorowicz Z, Burgess H, Doney L, Stuart B, Moore M, Little P (2014) Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst Rev 4:CD009992.  https://doi.org/10.1002/14651858.CD009992CrossRefGoogle Scholar
  29. Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517PubMedCrossRefGoogle Scholar
  30. Feldmeier H, Heukelbach J (2009) Epidermal parasitic skin diseases: a neglected category of poverty-associated plagues. Bull World Health Organ 87(2):152–159CrossRefGoogle Scholar
  31. Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6:167–169PubMedCrossRefGoogle Scholar
  32. Gao W, Zhang L (2015) Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target 23:619–626PubMedCrossRefGoogle Scholar
  33. Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health Pt A 43:1264–1270Google Scholar
  34. Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB (2016) Shape-dependent surface reactivity and antimicrobial activity of nano-cupricoxide. Environ Sci Technol 50:3975–3984PubMedCrossRefGoogle Scholar
  35. Gomes BP, Montagner F, Berber VB, Zaia AA, Ferraz CC, de Almeida JF, Souza-Filho FJ (2009) Antimicrobial action of intracanal medicaments on the external root surface. J Dent 37:76–81PubMedCrossRefGoogle Scholar
  36. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres, and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224:1–18PubMedCrossRefGoogle Scholar
  38. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2007) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985CrossRefGoogle Scholar
  39. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hermida-Montero LA, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J Hazard Mater 380:120850PubMedCrossRefGoogle Scholar
  41. Hu H, Zheng X, Hu H, Li Y (2009) Chemical compositions and antimicrobial activities of essential oils extracted from Acanthopanaxbrachypus. Arch Pharm Res 32:699–710PubMedCrossRefGoogle Scholar
  42. Huang H, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357PubMedCrossRefGoogle Scholar
  43. Johannsen M, Gneveckow U, Taymoorian K (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 23:315–323PubMedCrossRefGoogle Scholar
  44. Johnson ME, Blankschtein D, Langer R (1997) Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci 86:1162–1172PubMedCrossRefGoogle Scholar
  45. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MF (2019) Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci 20:2747–2778PubMedCentralCrossRefPubMedGoogle Scholar
  47. Kang R, Lipner S (2019) Consumer preferences of antifungal products for treatment and prevention of tinea pedis. J Dermatolog Treat 24:1–5Google Scholar
  48. Kaushik D, Khokra SL, Kaushik P, Sharma C, Aneja KR (2010) Evaluation of antioxidant and antimicrobial activity of Abutilon indicum. Pharmacologyonline 1:102–108Google Scholar
  49. Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444–461PubMedCentralCrossRefPubMedGoogle Scholar
  50. Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 1:70–83CrossRefGoogle Scholar
  51. Khurana A, Sardana K, Chowdhary A (2019) Antifungal resistance in dermatophytes: recent trends and therapeutic implications. Fungal Genet Biol 19:103255.  https://doi.org/10.1016/j.fgb.2019.103255CrossRefGoogle Scholar
  52. Kim SH, Kwak S, Sohn B, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thinfilm-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211:157–165CrossRefGoogle Scholar
  53. Kimmis BD, Downing C, Tyring S (2018) Hand-foot-and-mouth disease caused by coxsackievirus A6 on the rise. Cutis 102:353–356PubMedGoogle Scholar
  54. Kühbacher A, Burger-Kentischer A, Rupp S (2017) Interaction of Candida species with the skin. Microorganisms 5:32.  https://doi.org/10.3390/microorganisms5020032CrossRefPubMedCentralPubMedGoogle Scholar
  55. Lademann J, Richter H, Teichmann A, Otberg N, Blume Peytavi U, Luengo J (2007) Nanoparticles: an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66:159–164PubMedCrossRefGoogle Scholar
  56. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 255(1–2), 33–37PubMedCrossRefGoogle Scholar
  57. Lauer AC, Ramachandran C, Lieb LM, Niemiec S, Weiner ND (1996) Targeted delivery to the pilosebaceous unit via liposomes. Adv Drug Deliv Rev 18:311–324CrossRefGoogle Scholar
  58. Le Lay C, Akerey B, Fliss I, Subirade M, Rouabhia M (2008) Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J Appl Microbiol 105:1630–1639PubMedCrossRefGoogle Scholar
  59. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201PubMedCrossRefGoogle Scholar
  60. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604PubMedCrossRefGoogle Scholar
  61. Mishra YK, Adelung R, Röhl C, Shukla D, Spors F, Tiwari V (2011) Virostatic potential of micro-nanofilopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res 92:305PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S (2008) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:S235–S241PubMedCrossRefGoogle Scholar
  63. Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M (2019) Synthesis and application of silver nanoparticles (AgNPs) for the prevention of infection in healthcare workers. Int J Mol Sci 20:3620–3638PubMedCentralCrossRefPubMedGoogle Scholar
  64. Nasir A (2010) Nanotechnology and dermatology: part II risks of nanotechnology. Clin Dermatol 28:581–588PubMedCrossRefGoogle Scholar
  65. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347PubMedCrossRefGoogle Scholar
  66. Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51PubMedCrossRefGoogle Scholar
  67. Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149PubMedCrossRefGoogle Scholar
  68. Ouf SA, El-Adly AA, Mohamed AH (2015) Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol 64:1151–1161PubMedCrossRefGoogle Scholar
  69. Owais M, Gupta CM (2005) Targeted drug delivery to macrophages in parasitic infections, Curr. Drug Deliv 2:311–318Google Scholar
  70. Pan Y, Neuss S, Leifert A (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949PubMedCrossRefGoogle Scholar
  71. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10:1195–1208PubMedCrossRefPubMedCentralGoogle Scholar
  72. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik V et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 27, 1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  74. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193PubMedPubMedCentralCrossRefGoogle Scholar
  75. Raju G, Katiyar N, Vadukumpully S, Shankarappa SA (2018) Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J Dermatol Sci 89:146–154PubMedCrossRefGoogle Scholar
  76. Rezaie S, Shahverdi AR (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. In: 2011 International Conference on Bioscience, Biochemistry and Bioinformatics, vol 5. IACSIT, SingaporeGoogle Scholar
  77. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633CrossRefGoogle Scholar
  79. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng 30:1034–1039CrossRefGoogle Scholar
  80. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–532CrossRefGoogle Scholar
  81. Sharma A, Sharma U (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140CrossRefGoogle Scholar
  82. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7:219–242CrossRefGoogle Scholar
  83. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC (2014) Practice guidelines for the diagnosis and management of skin and soft tissue infections: update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10–e52PubMedCrossRefGoogle Scholar
  84. Sutradhar P, Saha M, Maiti D (2014) Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4, 86Google Scholar
  85. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Surface chemistry influences cancer-killing effect of TiO2 nanoparticles. Nanomedicine 4:226–236PubMedPubMedCentralCrossRefGoogle Scholar
  86. Trigilio J, Antoine TE, Paulowicz I, Mishra YK, Adelung R, Shukla D (2012) Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion. PLoS One 7:e48147PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tiwari N, Pandit R, Gaikwad S, Gade A, Rai M (2017) Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnology, 11(2), 205–211PubMedCrossRefGoogle Scholar
  88. Ugur SS, Sarıışık M, Aktaş AH, Uçar MC, Erden E (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5:1204–1210PubMedPubMedCentralCrossRefGoogle Scholar
  89. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479PubMedPubMedCentralGoogle Scholar
  90. Valderrama-Beltrán S, Gualtero S, Álvarez-Moreno C, Gil F, Ruiz-Morales Á, Rodríguez JY, Osorio J, Tenorio I, Quintero CG, Mackenzie S, Caro MA, Zhong A, Arias G, Berrio I, Martinez E, Cortés G, De la Hoz A, Arias CA (2019) Risk factors associated with methicillin-resistant Staphylococcus aureus skin and soft tissue infections in hospitalized patients in Colombia. Int J Infect Dis 19:30292–302910Google Scholar
  91. Wang Z, Von Dem Bussche A, Kabadi PK, Kane AB, Hurt RH (2013) Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7:8715–8727PubMedPubMedCentralCrossRefGoogle Scholar
  92. Whitley R, Baines J (2018) Clinical management of herpes simplex virus infections: past, present, and future. F1000 Res 7(F1000 Faculty Rev):1726CrossRefGoogle Scholar
  93. Xi A, Bothun GD (2014) Centrifugation-based assay for examining nanoparticle–lipid membrane binding and disruption. Analyst 139:973–981PubMedCrossRefGoogle Scholar
  94. Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, Chen Z, Wang X, Chen X, Gao J (2013) Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7:3287–3296PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Debalina Bhattacharya
    • 1
  • Rituparna Saha
    • 2
  • Mainak Mukhopadhyay
    • 2
  1. 1.Department of MicrobiologyMaulana Azad CollegeKolkataIndia
  2. 2.Department of BiotechnologyJIS UniversityKolkataIndia

Personalised recommendations