Advertisement

Metal Nanoparticle Based Antibacterial Nanocomposites for Skin Infections

  • Arushi Verma
  • Vishal Singh
  • Amaresh Kumar SahooEmail author
Chapter

Abstract

There are ample numbers of patients who have been suffering from skin and soft tissue infections (SSTIs) all over the world. Development of SSTIs associates with various symptoms such as inflammatory response, fever and formation of lesions. Conventional antibiotic therapy has been used as routine practice for this kind of medical situation. However, the present scenario becomes more challenging due to the prevalence of antibiotic resistant bacterial infections. Moreover, the delayed wound healing due to certain medical conditions such as diabetes leads to an exaggeration of the complicacy of the skin infections. Therefore, healing bacterial skin infections with conventional antibiotics is not always found to be effective. Moreover, skin infections sometimes result in permanent scarring on infected areas after complete recovery also. This demands new therapeutics for skin infections as well as removal of the scar. In order to address these issues, for last few decades, nanotechnology-based approaches have been attempted by various research groups. These offer significant prospects of developing new therapeutic agents which exhibit heightened bactericidal activity against Gram-positive and Gram-negative bacterial infection. Additionally, the nanoscale materials have been used as an integrated component of several skincare products like gels and creams which assist the removal of the scar and the protection of the skin from potentially toxic UV light and other harmful agents like pollutants too. There have been several nanoscale materials such as metal and metal oxide nanoparticles (NPs), nanospheres, nanocapsules and various other nanocomposites which show huge potential of using these to combat against skin infections due to antibiotic resistant bacteria also.

Keywords

Skin infections Nanoparticles Nanoformulation Antibiotic resistant Bacterial infection 

Nomenclature

Ag NPs

Silver nanoparticles

ATP

Adenosine triphosphate

Au NPs

Gold nanoparticles

Cu NPs

Copper nanoparticles

CuO

Copper oxide

DNA

Deoxyribonucleic acid

ECM

Extracellular matrix

FDA

Food and Drug Administration

Fe3O4

Iron oxide

MDR

Multidrug resistant

MgO

Magnesium oxide

NPs

Nanoparticles

RNA

Ribonucleic acid

ROS

Reactive oxygen species

SPION

Super-paramagnetic iron oxide

SSTIs

Skin and soft tissue infections

TiO2

Titanium dioxide

UV

Ultraviolet

XDR

Extensive drug resistant

ZnO

Zinc oxide

References

  1. Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C, Rafailovich M (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp Parasitol 135:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  2. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24CrossRefGoogle Scholar
  3. Anghel AG, Grumezescu AM, Chirea M, Grumezescu V, Socol G, Iordache F, Oprea AE, Anghel I, Holban AM (2014) MAPLE fabricated Fe3O4@Cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes. Molecules 19:8981–8994PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anissimov YG (2014) Mathematical models for skin toxicology. Expert Opin Drug Metab Toxicol 10:551–560PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ansari MA, Khan HM, Khan AA, Sultan A, Azam A (2012) Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J Microbiol Biotechnol 28:1605–1613PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:246012PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bhowmick P, Pancsa R, Guharoy M, Tompa P (2013) Functional diversity and structural disorder in the human ubiquitination pathway. PLoS One 8:e65443PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2:395–401PubMedCrossRefPubMedCentralGoogle Scholar
  9. Boer M, Duchnik E, Maleszka R, Marchlewicz M (2016) Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv Dermatol Allergol XXXIII(1):1–5CrossRefGoogle Scholar
  10. Cardoso VS, Quelemes PV, Amorin A, Primo FL, Gobo GG, Tedesco AC, Mafud AC, Mascarenhas YP, Corrêa JR, Kuckelhaus SA, Eiras C, Leite JRS, Silva D, dos Santos Júnior JR (2014) Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnol 12:36CrossRefGoogle Scholar
  11. Couto A, Fernandes R, Cordeiro MNS, Reis SS, Ribeiro RT, Pessoa AM (2014) Dermic diffusion and stratum corneum: A state of the art review of mathematical models. J Control Release 177:74–83PubMedCrossRefPubMedCentralGoogle Scholar
  12. Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, Adami G, Apostoli P, De Palma G, Bovenzi M, Campanini M, Filon F (2015) Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Public Health 12:9282–9297PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831PubMedPubMedCentralGoogle Scholar
  14. DeLouise LA (2012) Applications of nanotechnology in dermatology. J Invest Dermatol 132:964–975PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad BLV (2012) Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies. Nanoscale 4:563–567PubMedCrossRefPubMedCentralGoogle Scholar
  16. Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25:5706–5713PubMedCrossRefPubMedCentralGoogle Scholar
  17. Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, Santus R, Pinheiro T (2009) Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275PubMedCrossRefPubMedCentralGoogle Scholar
  18. Filon FL, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G (2011) Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology 5:493–501PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gomathi Devi L, Nagaraj B (2014) Disinfection of Escherichia Coli gram negative Bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism. Photochem Photobiol 90(5):1089–1098PubMedPubMedCentralGoogle Scholar
  20. Grigore M, Grumezescu A, Holban A, Mogoşanu G, Andronescu E (2017) Collagen-nanoparticles composites for wound healing and infection control. Metals 7:516CrossRefGoogle Scholar
  21. Gupta S, Gupta S, Jindal N, Jindal A, Bansal R (2013) Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J 4:267PubMedPubMedCentralCrossRefGoogle Scholar
  22. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) Codoped with silver, carbon, and sulfur. Langmuir 26:2805–2810PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hashim PW, Nia JK, Han G, Ratner D (2019) Nanoparticles in dermatologic surgery. J Am Acad Dermatol S0190-9622(19)30606-1Google Scholar
  25. Herskovitz I, Macquhae F, Fox JD, Kirsner RS (2016) Skin movement, wound repair and development of engineered skin. Exp Dermatol 25:99–100PubMedCrossRefPubMedCentralGoogle Scholar
  26. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on Bacteria. Langmuir 24:4140–4144PubMedCrossRefPubMedCentralGoogle Scholar
  27. Huang Y, Yu F, Park Y-S, Wang J, Shin M-C, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  29. Jin T, Sun D, Su JY, Zhang H, Sue H-J (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12:390–399; quiz 400–401PubMedPubMedCentralGoogle Scholar
  31. Kolarsick PAJ, Kolarsick MA, Goodwin C (2011) Anatomy and physiology of the skin. J Dermatol Nurs Assoc 3:203–213CrossRefGoogle Scholar
  32. Kuotsu K, Karim K, Mandal A, Biswas N, Guha A, Chatterjee S, Behera M (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374PubMedPubMedCentralCrossRefGoogle Scholar
  33. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37PubMedCrossRefGoogle Scholar
  34. Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978PubMedCrossRefGoogle Scholar
  35. Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175–1188PubMedPubMedCentralGoogle Scholar
  36. Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G (2015) A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater 49:197–219PubMedCrossRefPubMedCentralGoogle Scholar
  37. Limbert G (2017) Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci 473:20170257PubMedPubMedCentralCrossRefGoogle Scholar
  38. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7: antibacterial ZnO nanoparticles. J Appl Microbiol 107:1193–1201PubMedCrossRefGoogle Scholar
  39. Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9:4069–4076PubMedCrossRefGoogle Scholar
  40. McGrath JA, Uitto J (2010) Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C (eds) Rook’s textbook of dermatology. Wiley-Blackwell, Oxford, pp 1–53Google Scholar
  41. Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277PubMedCrossRefPubMedCentralGoogle Scholar
  42. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280PubMedCrossRefPubMedCentralGoogle Scholar
  43. Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV (2016) Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 62:293–300CrossRefGoogle Scholar
  44. Ng KW, Lau WM (2015) Skin deep: the basics of human skin structure and drug penetration. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers chemical methods in penetration enhancement. Springer, Berlin, pp 3–11Google Scholar
  45. Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51PubMedCrossRefGoogle Scholar
  46. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457PubMedCrossRefPubMedCentralGoogle Scholar
  47. Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520PubMedCrossRefPubMedCentralGoogle Scholar
  48. Pandey P, Packiyaraj MS, Nigam H, Agarwal GS, Singh B, Patra MK (2014) Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. Beilstein J Nanotechnol 5:789–800PubMedPubMedCentralCrossRefGoogle Scholar
  49. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10:1195–1208PubMedCrossRefPubMedCentralGoogle Scholar
  50. Patrascu JM, Nedelcu IA, Sonmez M, Ficai D, Ficai A, Vasile BS, Ungureanu C, Albu MG, Andor B, Andronescu E, Rusu LC (2015) Composite scaffolds based on silver nanoparticles for biomedical applications. J Nanomater 2015:1–8CrossRefGoogle Scholar
  51. Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386PubMedCrossRefPubMedCentralGoogle Scholar
  52. Proksch E, Brandner JM, Jensen J-M (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072PubMedCrossRefPubMedCentralGoogle Scholar
  53. Prost-Squarcioni C (2006) [Histology of skin and hair follicle]. Med Sci (Paris) 22:131–137CrossRefGoogle Scholar
  54. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Delivery Sci Technol 44:421–430CrossRefGoogle Scholar
  56. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716PubMedCrossRefPubMedCentralGoogle Scholar
  58. Sandri G, Miele D, Faccendini A, Bonferoni MC, Rossi S, Grisoli P, Taglietti A, Ruggeri M, Bruni G, Vigani B, Ferrari F (2019) Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing. Polymers 11:1207PubMedCentralCrossRefGoogle Scholar
  59. Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1:197–206PubMedPubMedCentralCrossRefGoogle Scholar
  60. Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465CrossRefGoogle Scholar
  61. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280PubMedCrossRefPubMedCentralGoogle Scholar
  62. Spoiala A, Voicu G, Ficai D, Ungureanu C, Albu MG, Vasile BS, Ficai A, Andronescu E (2015) Collagen/TiO2-Ag composite nanomaterials for antimicrobial applications. UPB Sci Bull Ser B 77:275–290Google Scholar
  63. Szmyd R, Goralczyk AG, Skalniak L, Cierniak A, Lipert B, Filon FL, Crosera M, Borowczyk J, Laczna E, Drukala J, Klein A, Jura J (2013) Effect of silver nanoparticles on human primary keratinocytes. Biol Chem 394:113PubMedCrossRefPubMedCentralGoogle Scholar
  64. Takamiya AS, Monteiro DR, Bernabé DG, Gorup LF, Camargo ER, Gomes-Filho JE, Oliveira SHP, Barbosa DB (2016) In vitro and in vivo toxicity evaluation of colloidal silver nanoparticles used in endodontic treatments. J Endod 42:953–960PubMedCrossRefPubMedCentralGoogle Scholar
  65. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8:3016–3027PubMedCrossRefPubMedCentralGoogle Scholar
  66. Thakur K, Sharma G, Singh B, Chhibber S, Katare OP (2018) Current state of nanomedicines in the treatment of topical infectious disorders. Recent Pat Antiinfect Drug Discov 13:127–150PubMedCrossRefPubMedCentralGoogle Scholar
  67. Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  68. Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens: Photocarcinogenic and NP sunscreens. Australas J Dermatol 52:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  69. Vasanth SB, Kurian GA (2017) Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. Artif Cells Nanomed Biotechnol 45:1721–1727PubMedCrossRefPubMedCentralGoogle Scholar
  70. Wang C-C, Wang S, Xia Q, He W, Yin J-J, Fu PP, Li J-H (2013) Phototoxicity of zinc oxide nanoparticles in HaCaT keratinocytes-generation of oxidative DNA damage during UVA and visible light irradiation. J Nanosci Nanotechnol 13:3880–3888PubMedCrossRefPubMedCentralGoogle Scholar
  71. Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zan L, Fa W, Peng T, Gong Z (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. J Photochem Photobiol B Biol 86:165–169CrossRefGoogle Scholar
  73. Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arushi Verma
    • 1
  • Vishal Singh
    • 1
  • Amaresh Kumar Sahoo
    • 1
    Email author
  1. 1.Department of Applied SciencesIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations