Advertisement

The Bone Biology and the Nanotechnology for Bone Engineering and Bone Diseases

  • Fabio Franceschini MitriEmail author
  • Avinash P. Ingle
Chapter

Abstract

The issues about the biology of bone tissue fascinate every researcher in the health area. Bone is a vital tissue and has a great mechanical strength and a remarkable resilience due to the compounds of its extracellular matrix. The bone matrix with organic and inorganic compounds is the starting point for the researchers who investigate the range of biomaterials applied in grafting procedures. Biomaterials are now produced at the nanoscale to work as a scaffold and facilitate bone repair, in an option to the autogenous graft. Different nanomaterials are being studied to apply in the treatment of various bone diseases including cancer. Nanomaterials as nanocarriers of drugs are being regarded as the safest system to treat cancer of bones, considering no side effects and tumor cells precision. Therefore, this chapter emphasizes all mechanisms of bone biology regarding healing and bone repair after application of nanomaterials, and also discusses the advancement of nanotechnology research in this area.

Keywords

Bone biology Bone engineering Bone diseases Nanotechnology Nanomaterials Implantology 

References

  1. Abazari MF, Nejati F, Nasiri N, Khazeni ZAS, Nazari B, Enderami SE, Mohajerani H (2019) Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 720:144096–144102PubMedCrossRefGoogle Scholar
  2. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointgration. Eur Spine J 10(2):S96–S101PubMedPubMedCentralGoogle Scholar
  3. Aluigi A, Ballestri M, Guerrini A, Sotgiu G, Ferroni C, Corticelli F, Gariboldi MB, Monti E, Varchi G (2018) Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumor activity. Mater Sci Eng C Mater Biol Appl 1(90):476–484CrossRefGoogle Scholar
  4. Bonzi G, Salmaso S, Scomparin A, Eldar-Boock A, Satchi-Fainaro R, Caliceti P (2015) Novel pullulan bioconjugate for selective breast cancer bone metastases treatment. Bioconjug Chem 26(3):489–501PubMedCrossRefGoogle Scholar
  5. Buckwalter A, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 5:371–386Google Scholar
  6. Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12PubMedCrossRefGoogle Scholar
  7. Chou YF, Huang W, Dunn JC, Miller TA, Wu BM (2007) The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. J Biomed Mater Res A 80(1):206–215Google Scholar
  8. Ciapetti G, Granchi D, Devescovi V, Baglio SR, Leonardi E, Martini D, Jurado MJ, Olalde B, Armentano I, Kenny JM, Walboomers FX, Alava JI, Baldini N (2012) Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Int J Mol Sci 13(2):2439–2458PubMedPubMedCentralCrossRefGoogle Scholar
  9. Della-Valle C, Visai L, Santin M, Cigada A, Candiani G, Pezzoli D, Arciola CR, Imbriani M, Chiesa R (2012) A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs 35:864–875PubMedCrossRefGoogle Scholar
  10. Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86(1):77–91PubMedCrossRefGoogle Scholar
  11. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754PubMedCrossRefGoogle Scholar
  12. Elefteriou F (2008) Regulation of bone remodeling by the central and peripheral nervous system. Biophysics 473(2):231–236Google Scholar
  13. Elias CMV, Maia-Filho ALM, Silva LR, Amaral FPM, Webster TJ, Marciano FR, Lobo AO (2019) In vivo evaluation of the genotoxic effects of poly (butylene adipate-co-terephthalate)/polypyrrole with nanohydroxyapatite scaffolds for bone regeneration. Materials 12:1330–1345PubMedCentralCrossRefPubMedGoogle Scholar
  14. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10:334–438PubMedCentralCrossRefPubMedGoogle Scholar
  15. Everts V, Delaissé JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17(1):77–99PubMedCrossRefGoogle Scholar
  16. Ferreira L, Squier T, Park H, Choe H, Kohane DS, Langer R (2008) Human embryoid bodies containing nano- and microparticulate delivery vehicles. Adv Mater 20(12):2285–2291CrossRefGoogle Scholar
  17. Garino N, Sanvitale P, Dumontel B, Laurenti M, Colilla M, Izquierdo-Barba I, Cauda V, Vallet-Regi M (2019) Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv 9:11312–11321PubMedPubMedCentralCrossRefGoogle Scholar
  18. Geiger BC, Wang S, Padera RF Jr, Grodzinsky AJ, Hammond PT (2018) Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med 28(10):469–488Google Scholar
  19. Gerstenfeld LC, Culliname DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884PubMedCrossRefGoogle Scholar
  20. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11):1215–1228PubMedCrossRefGoogle Scholar
  21. Greiner JFW, Gottschalk M, Fokin N, Büker B, Kaltschmidt C, Hütten A, Kaltschmidt B (2019) Natural and synthetic nanopores directing osteogenic differentiation of human stem cells. Nanomedicine 17:319–328PubMedCrossRefGoogle Scholar
  22. Griffin MF, Kalaskar DM, Seifalian A, Butler PE (2016) An update on the application of nanotechnology in bone tissue engineering. Open Orthop J 10(3):836–848PubMedPubMedCentralCrossRefGoogle Scholar
  23. Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106(6):2139–2151PubMedCrossRefGoogle Scholar
  24. Guo J, Meng Z, Chen G, Xie D, Wang H, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng A 18(11–12):1239–1252CrossRefGoogle Scholar
  25. Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2019) Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials 9:1089–1119PubMedCentralCrossRefPubMedGoogle Scholar
  26. Harvey EJ, Henderson JE, Vengallatore ST (2010) Nanotechnology and bone healing. J Orthop Trauma 24:25–30CrossRefGoogle Scholar
  27. Hu F, Zhou Z, Xu Q, Fan C, Wang L, Ren H, Xu S, Ji Q, Chen X (2019) A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int J Biol Macromol 129(15):1113–1119PubMedCrossRefGoogle Scholar
  28. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:131–138CrossRefGoogle Scholar
  29. Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B (2008) Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 47:66–73PubMedCrossRefGoogle Scholar
  30. Jell G, Minelli C, Stevens M (2009) Biomaterial-related approaches: surface structuring. In: Fundamentals of tissue engineering and regenerative medicine. Springer, New York, pp 469–484CrossRefGoogle Scholar
  31. Johnson LC (1966) The kinetics of skeletal remodeling. Birth Defects Orig Artic Ser 2(1):66–142Google Scholar
  32. Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY (2005) A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26:6314–6322PubMedCrossRefGoogle Scholar
  33. Kennedy OD, Herman DM, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2012) Activation of resorption in fastigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50(5):1115–1122PubMedPubMedCentralCrossRefGoogle Scholar
  34. Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kneser U, Schaefer DG, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kose N, Çalak R, Pekşen C, Kiremitçi A, Burukoglu D, Koparal S, Doğan A (2016) Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: in vivo study. Injury 47:320–324PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kovács D, Igaz N, Keskeny C, Bélteky P, Tóth T, Gáspar R, Madarász D, Rázga Z, Kónya Z, Boros IM, Kiricsi M (2016) Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci Rep 13(6):27902–27914CrossRefGoogle Scholar
  39. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926PubMedCrossRefGoogle Scholar
  40. Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:6–10PubMedCrossRefGoogle Scholar
  41. Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q (2017) Engineering multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29:1605754–1605760CrossRefGoogle Scholar
  42. Li L, Zhang R, Gu W, Xu ZP (2018) Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. Nanomedicine 14(7):2355–2364PubMedCrossRefGoogle Scholar
  43. Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19(1):1–19CrossRefGoogle Scholar
  44. Liu J, Zeng Y, Shi S, Xu L, Zhang H, Pathak JL, Pan Y (2017) Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int J Nanomedicine 12:3561–3575PubMedPubMedCentralCrossRefGoogle Scholar
  45. Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S (2019) Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 14:457–468PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lu HD, Zhao HQ, Wang K, Liv LL (2011) Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharmacol 420:358–365CrossRefGoogle Scholar
  47. Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M (2019) Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater 96:547–556PubMedCrossRefGoogle Scholar
  48. Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473(2):201–209PubMedCrossRefGoogle Scholar
  49. Mitri FF, Ingle AP, Rai M (2018) Nanotechnology in the management of bone diseases and as regenerative medicine. Curr Nanosci 14:95–103CrossRefGoogle Scholar
  50. Mokhtari MJ, Koohpeima F, Mohammadi H (2017) A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer. Chem Biol Drug Des 90(4):618–628PubMedCrossRefGoogle Scholar
  51. Moore C, Kosgodage U, Lange S, Inal J (2017) The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer 141:428–436PubMedCrossRefGoogle Scholar
  52. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and release in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270PubMedCrossRefGoogle Scholar
  53. Peng KT, Chiang YC, Huang TY, Chen PC, Chang PJ, Lee CW (2019) Curcumin nanoparticles are a promising anti-bacterial and anti-inflammatory agent for treating periprosthetic joint infections. Int J Nanomedicine 14:469–481PubMedPubMedCentralCrossRefGoogle Scholar
  54. Prabbhakaran MP, Venugal J, Ramakrishna S (2009) Electrospun nanostructured sacaffolds for bone tissue engineering. Acta Biomater 5:2884–2893CrossRefGoogle Scholar
  55. Qadri S, Haik Y, Mensah-Brown E, Bashir G, Fernandez-Cabezudo MJ, Al-Ramadi BK (2017) Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine 13:2241–2250PubMedCrossRefGoogle Scholar
  56. Raghavendran HRB, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T (2014) A comparative study on in vivo osteogenic priming potential for electron spun scaffold PLLA/HA/Col, PLLA/Col for tissue engineering application. PLoS One 9(8):e104389CrossRefGoogle Scholar
  57. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75PubMedCrossRefGoogle Scholar
  58. Scheller EL, Krebsbach PH, Kohn DH (2009) Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 36:368–389PubMedPubMedCentralCrossRefGoogle Scholar
  59. Seeman E, Delmas PD (2006) Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261CrossRefGoogle Scholar
  60. Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6(1–4):205–216CrossRefGoogle Scholar
  61. Slane J, Vivanco J, Rose W, Ploeg HL, Squire M (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver particles. Mater Sci Eng C 48:188–196CrossRefGoogle Scholar
  62. Spin-Neto R, Stravopoulos A, Dias-Pereira LA, Marcantonio-Junior E, Wenzel A (2013) Fate of autologous and fresh-frozen allogenic block bone grafts used for ridge augmentation. A CBCT-based analysis. Clin Oral Implants Res 24:167–173PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sun W, Han Y, Li Z, Ge K, Zhang J (2016) Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir 32(36):9237–9244PubMedCrossRefGoogle Scholar
  64. Tejinder S, Veerpal K, Manish K, Prabhjot K, Murthy RSR, Rawal RK (2015) The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 23:1–15CrossRefGoogle Scholar
  65. Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater 84:34–48PubMedCrossRefGoogle Scholar
  66. Villaverde G, Nairi V, Baeza A, Vallet-Regi M (2017) Double sequential encrypted targeting sequence: a new concept for bone cancer treatment. Chemistry 23(30):7174–7179PubMedCrossRefGoogle Scholar
  67. Wamsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC (2015) Nanotechnology in bone tissue engineering. Nanomedicine 11(5):1253–1263CrossRefGoogle Scholar
  68. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249PubMedPubMedCentralCrossRefGoogle Scholar
  69. Wang C, Yu B, Fan Y, Ormsby RW, McCarthy H, Dunne N, Li X (2019) Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater Sci Eng C Mater Biol Appl 103:109823–109835PubMedCrossRefGoogle Scholar
  70. Webster TJ (2017) IJN’s second year is now a part of nanomedicine history. Neuropsychiatr Dis Treat 2:1–2Google Scholar
  71. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810PubMedCrossRefGoogle Scholar
  72. Wei G, Ma PX (2004) Structure and properties of nanohydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757PubMedCrossRefGoogle Scholar
  73. Weinstein S, Toker IA, Emmanuel R, Ramishetti S, Hazan-Halevy I, Rosenblum D, Goldsmith M, Abraham A, Benjamini O, Bairey O, Raanani P, Nagler A, Lieberman J, Peer D (2016) Harnessing RNAi-based nanomedicines for therapeutic gene silencing I B-cells malignancies. Proc Natl Acad Sci U S A 113:16–22CrossRefGoogle Scholar
  74. Wu AC, Morrison NA, Kelly WL, Forwood MR (2013) MCP-1 expression is specifically regulated during activation on skeletal repair and remodeling. Calcif Tissue Int 92(6):566–575PubMedCrossRefGoogle Scholar
  75. Xiao X, Liu R, Huang Q (2007) Preparation and characterization of nano-hydroxyapatite/polymers increase osteoblast attachment. Int J Nanomedicine 2:487–492Google Scholar
  76. Yang F, Both SK, Yang X, Walboomers F, Jansen JA (2009) Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater 5:3295–3304PubMedCrossRefPubMedCentralGoogle Scholar
  77. Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, Wang H, Zhang Y, Zheng Z, Ting K, Wang C, Liu Y (2019) Nanosilver/poly (DL-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoconductivity. Int J Nanomedicine 14:1849–1863PubMedPubMedCentralCrossRefGoogle Scholar
  78. Zhang H, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80CrossRefGoogle Scholar
  79. Zhang ZG, Li ZH, Mao XZ (2011) Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63:439–443CrossRefGoogle Scholar
  80. Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G (2018) Mesemchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer 9(17):3129–3137PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Human AnatomyBiomedical Sciences Institute, Federal University of UberlandiaUberlandiaBrazil
  2. 2.Department of BiotechnologyEngineering School of Lorena, University of Sao PauloLorenaBrazil

Personalised recommendations