Advertisement

Ormiscodes Outbreak Dynamics: Impacts and Perspectives in a Warming World

  • Juan Paritsis
Chapter
  • 23 Downloads

Abstract

Changes in the frequency and magnitude of insect outbreak appear to be occurring worldwide, but research has been mainly focused on northern hemisphere forests. In the temperate forests of the southern Andes, Nothofagus tree species experience severe defoliation caused by Ormiscodes caterpillars (Lepidoptera: Saturniidae). Current impacts of defoliation on tree health are relatively low and short term. Although relationships between Ormiscodes outbreaks and climate proved to be complex, defoliation events are generally associated with drier and warmer than average growing seasons. However, these probable climatic influences on outbreak occurrence are contingent on the sensitivity of Nothofagus and Ormiscodes to temperature and precipitation along environmental gradients. Relationships between Ormiscodes outbreaks and climate suggest that under predicted warmer and drier climates in the twenty-first century, these defoliator outbreaks may become more frequent and contribute to future forest decline in Nothofagus forests.

Keywords

Forest defoliator Patagonian forests Nothofagus Climate change Insect outbreaks 

References

  1. Angulo AO, Lemaire C, Olivares TS (2004) Catalogo crítico e ilustrado de las especies de la familia Saturniidae en Chile (Lepidoptera: Saturniidae). Gayana 68:20–42Google Scholar
  2. Baldini A, Alvarado A (2008) Manual de plagas y enfermedades del bosque nativo en Chile Asistencia para la recuperación y revitalización de los bosques templados de Chile, con énfasis en los Nothofagus caducifolios. FAO/CONAF, Santiago de ChileGoogle Scholar
  3. Barbosa P, Letourneau DK, Agrawal AA (2012) Insect outbreaks revisited. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  4. Bauerle P, Rutherford P, Lanfranco D (1997) Defoliadores de roble (Nothofagus obliqua), rauli (N. alpina), coigue (N. dombeyi) y lenga (N. pumilio). Bosque 18:97–107CrossRefGoogle Scholar
  5. Chávez RO, Rocco R, Gutiérrez AG et al (2019) A self-calibrated non-parametric time series analysis approach for assessing insect defoliation of broad-leaved deciduous Nothofagus pumilio forests. Remote Sens (Basel) 11:204CrossRefGoogle Scholar
  6. Cogollor G (2002) Dinámica poblacional de agentes de daño asociados a bosque nativo. In: Baldini A, Pancel L (eds) Agentes de daño en el bosque nativo. Editorial Universitaria, Santiago de Chile, pp 351–352Google Scholar
  7. Esper J, Buntgen U, Frank DC et al (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc B 274:671–679PubMedCrossRefGoogle Scholar
  8. Estay SA, Chávez RO, Rocco R et al (2019) Quantifying massive outbreaks of the defoliator moth Ormiscodes amphimone in deciduous Nothofagus-dominated southern forests using remote sensing time series analysis. J Appl Entomol 143(7):787–796CrossRefGoogle Scholar
  9. Flower A, Gavin DG, Heyerdahl EK et al (2014) Drought-triggered western spruce budworm outbreaks in the interior Pacific Northwest: a multi-century dendrochronological record. For Ecol Manag 324:16–27CrossRefGoogle Scholar
  10. Hertel D, Therburg A, Villalba R (2008) Above-and below-ground response by Nothofagus pumilio to climatic conditions at the transition from the steppe-forest boundary to the alpine tree-line in southern Patagonia, Argentina. J Appl Entomol 1:21–33Google Scholar
  11. Hosking GP, Kershaw DJ (1985) Red beech death in the Maruia valley, South Island, New Zealand. N Z J Bot 23:201–211CrossRefGoogle Scholar
  12. Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398CrossRefGoogle Scholar
  13. Jepsen JU, Hagen SB, Ims RA et al (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264PubMedCrossRefGoogle Scholar
  14. Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188Google Scholar
  15. Lemaire C (2002) The Saturniidae of America. Les Saturniidae Americains. Druckhaus Frankenbach, LindenbergGoogle Scholar
  16. Logan JA, Regniere J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137CrossRefGoogle Scholar
  17. Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant–eating insects. BioScience 37:110–118CrossRefGoogle Scholar
  18. Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715CrossRefGoogle Scholar
  19. Morrow PA, LaMarche VC (1978) Tree ring evidence for chronic insect suppression of productivity in subalpine Eucalyptus. Science 201:1244–1245PubMedCrossRefGoogle Scholar
  20. Myers JH, Cory JS (2013) Population cycles in Forest Lepidoptera revisited. Annu Rev Ecol Evol Syst 44:565–592CrossRefGoogle Scholar
  21. Nola P, Morales M, Motta R et al (2006) The role of larch budmoth (Zeiraphera diniana Gn) on forest succession in a larch (Larix decidua Mill) and Swiss stone pine (Pinus cembra L) stand in the Susa Valley (Piedmont, Italy). Trees 20:371–382CrossRefGoogle Scholar
  22. Olivares-Contreras VA, Mattar C, Gutiérrez AG et al (2019) Warming trends in Patagonian subantartic forest. Int J Appl Earth Obs Geoinf 76:51–65CrossRefGoogle Scholar
  23. Paritsis J, Veblen TT (2010) Temperature and foliage quality affect performance of the outbreak defoliator Ormiscodes amphimone (F) (Lepidoptera: Saturniidae) in northwestern Patagonia, Argentina. Rev Chil Hist Nat 83:593–603CrossRefGoogle Scholar
  24. Paritsis J, Veblen TT (2011) Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob Chang Biol 17:239–253CrossRefGoogle Scholar
  25. Paritsis J, Veblen TT, Kitzberger T (2009) Assessing dendroecological methods to reconstruct defoliator outbreaks on Nothofagus pumilio in northwestern Patagonia, Argentina. Can J For Res 39:1617–1629CrossRefGoogle Scholar
  26. Paritsis J, Elgueta M, Quintero C et al (2010) New host–plant records for the defoliator Ormiscodes amphimone (Fabricius) (Lepidoptera: Saturniidae). Neotrop Entomol 39:1048–1050PubMedCrossRefGoogle Scholar
  27. Paritsis J, Veblen TT, Smith JM et al (2011) Spatial prediction of caterpillar (Ormiscodes) defoliation in Patagonian Nothofagus forests. Landsc Ecol 26:791–803CrossRefGoogle Scholar
  28. Paritsis J, Quintero C, Kitzberger T et al (2012) Mortality of the outbreak defoliator Ormiscodes amphimone (Lepidoptera: Saturniidae) caused by natural enemies in northwestern Patagonia, Argentina. Rev Chil Hist Nat 85:113–122CrossRefGoogle Scholar
  29. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic, New YorkGoogle Scholar
  30. Piper FI, Fajardo A (2014) Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J Ecol 102:1101–1111CrossRefGoogle Scholar
  31. Piper FI, Gundale MJ, Fajardo A (2015) Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species. Ann Bot 115:1093–1103PubMedPubMedCentralCrossRefGoogle Scholar
  32. Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Curr For Rep 4:35–50Google Scholar
  33. Raffa KF, Aukema BH, Bentz BJ et al (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58:501–517CrossRefGoogle Scholar
  34. Rauchfuss J, Ziegler SS, Speer JH et al (2009) Dendroecological analysis of spruce budworm outbreaks and their relation to climate near the prairie–forest border in northwestern Minnesota. Phys Geogr 30:185–204CrossRefGoogle Scholar
  35. Readshaw JL, Mazanec Z (1969) Use of growth rings to determine past phasmatid defoliations of alpine ash forests. Aust For 33:29–36CrossRefGoogle Scholar
  36. Silva C (1917) La Dirphia amphimone (F) Berg y sus parásitos. Boletín MNHN (Chile) 10:105–128Google Scholar
  37. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, TucsonGoogle Scholar
  38. Speer JH, Kulakowski D (2017) Creating a buzz: insect outbreaks and disturbance interactions. In: Amoroso MM, Daniels L, Baker PJ, Camarero JJ (eds) Dendroecology: tree-ring analyses applied to ecological studies. Springer, Cham, pp 231–255CrossRefGoogle Scholar
  39. Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought–induced tree mortality in Nothofagus-site, climatic sensitivity and growth trends. J Ecol 92:954–966CrossRefGoogle Scholar
  40. Suarez ML, Villalba R, Mundo IA et al (2015) Sensitivity of Nothofagus dombeyi tree growth to climate changes along a precipitation gradient in northern Patagonia, Argentina. Trees 29:1053–1067CrossRefGoogle Scholar
  41. Swetnam TW, Lynch AM (1993) Multicentury, regional–scale patterns of western spruce budworm outbreaks. Ecol Monogr 63:399–424CrossRefGoogle Scholar
  42. Swetnam TW, Thompson MA, Sutherland EK (1985) Spruce budworms handbook: using dendrochronology to measure radial growth of defoliated trees. Agriculture Handbook No 639, Cooperative State Research Service, Forest Service, USDAGoogle Scholar
  43. Veblen TT, Donoso C, Kitzberger T et al (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353Google Scholar
  44. Veblen TT, Kitzberger T, Raffaele E et al (2008) The historical range of variability of fires in the Andean–Patagonian Nothofagus forest region. Int J Wildland Fire 17:724–741CrossRefGoogle Scholar
  45. Vera C, Silvestri G, Liebmann B et al (2006) Climate change scenarios for seasonal precipitation in South America from IPCC–AR4 models. Geophys Res Lett 33:L13707CrossRefGoogle Scholar
  46. Villalba R, Lara A, Boninsegna JA et al (2003) Large–scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Chang 59:177–232CrossRefGoogle Scholar
  47. Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan Paritsis
    • 1
  1. 1.Laboratorio EcotonoINIBIOMA-Universidad Nacional del Comahue, CONICETBarilocheArgentina

Personalised recommendations